\qquad

For Questions 1-7 refer to the following graph

1. $\lim _{x \rightarrow-1} \cos (f(x))$
2. $\lim _{x \rightarrow 2^{-}} f(x)$
3. $\lim _{x \rightarrow 2^{+}} f(x)$
4. $\lim _{x \rightarrow 2} f(x)$
5. $F(2)$
6. $\lim _{x \rightarrow 5^{-}} \arctan (f(x))$
7. $\lim _{x \rightarrow 5^{+}}[x \cdot f(x)]$
8. $\lim _{h \rightarrow 0} \frac{(2+h)^{5}-32}{h}$
(A) $f^{\prime}(5)$ where $f(x)=x^{2}$
(B) $f^{\prime}(2)$ where $f(x)=x^{5}$
(C) $f^{\prime}(5)$ where $f(x)=2^{x}$
(D) $f^{\prime}(2)$ where $f(x)=2^{x}$
9. If $f(x)=\frac{\sqrt{x}-1}{\sqrt{x}+1}$ then $f^{\prime}(x)=$
(A) $\frac{\sqrt{x}}{(\sqrt{x}+1)^{2}}$
(B) $\frac{x}{(\sqrt{x}+1)^{2}}$
(C) $\frac{1}{\sqrt{x}(\sqrt{x}+1)^{2}}$
(D) $\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}+1)^{2}}$
10. If $f(x)=\left(x^{2}-3 x\right)^{3 / 2}$, then $f^{\prime}(4)=$
(A) $\frac{15}{2}$
(B) 9
(C) $\frac{21}{2}$
(D) 15
11. If $y=a \sin x+b \cos x$, then $y+y^{\prime \prime}=$
(A) 0
(B) $2 a \sin x$
(C) $2 b \cos x$
(D) $-2 a \sin x$
12. Let $h(x)=x \cdot f(x) \cdot g(x)$. Find $h^{\prime}(1)$ if $f(1)=-2, g(1)=3, f^{\prime}(1)=1$, and $g^{\prime}(1)=\frac{1}{2}$
13. Find an equation of the tangent line to the graph of $3 y^{2}-x^{3}-x y^{2}=7$ at the point $(1,2)$.

Cumulative Review \#1 Answers

1. 1
2. 2
3. 4
4. DNE
5. 3
6. $\frac{\pi}{4}$
7. 10
8. B
9. C
10. D
11. A
12. -4
13. $y-2=\frac{7}{8}(x-1)$
