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2.1 Limits, Rates of Change, and Tangent Lines

Preliminary Questions
1. Average velocity is equal to the slope of a secant line through two points on a graph. Which graph?

SOLUTION Average velocity is the slope of a secant line through two points on the graph of position as a function of time.
2. Can instantaneous velocity be defined as a ratio? If not, how is instantaneous velocity computed?

SOLUTION Instantaneous velocity cannot be defined as a ratio. It is defined as the limit of average velocity as time elapsed shrink
to zero.

3. What is the graphical interpretation of instantaneous velocity at a mamen?

SOLUTION Instantaneous velocity at time= ¢ is the slope of the line tangent to the graph of position as a function of time at
t=1y.

4. What is the graphical interpretation of the following statement? The average rate of change approaches the instantaneous r
of change as the intervatg, x1] shrinks toxg.

SOLUTION The slope of the secant line over the interigl, x1] approaches the slope of the tangent line at x.

5. The rate of change of atmospheric temperature with respect to altitude is equal to the slope of the tangent line to a graph. Whic
graph? What are possible units for this rate?

SOLUTION The rate of change of atmospheric temperature with respect to altitude is the slope of the line tangent to the graph ¢
atmospheric temperature as a function of altitude. Possible units for this rate of chafif¢faoe °C/m.

Exercises
1. A ball dropped from a state of rest at time= 0 travels a distance(r) = 4.9:2 min¢ seconds.
(a) How far does the ball travel during the time inter{&|2.5]?
(b) Compute the average velocity ojer 2.5].
(c) Compute the average velocity for the time intervals in the table and estimate the ball's instantaneous velecity at

Interval | [2,2.01] | [2.2.005] | [2,2.001] | [2,2.00001]

Average
velocity

SOLUTION
(a) During the time interval2, 2.5], the ball travelsAs = 5(2.5) — 5(2) = 4.9(2.5)%2 — 4.9(2)2 = 11.025 m.
(b) The average velocity ovg2, 2.5] is
As 525 —s(2)  11.025
At 25-2 05

= 22.05m/s.

(©)

timeinterval | [2,2.01] | [2,2.005] | [2,2.001] | [2,2.00001]
average velocity| 19.649 | 19.6245 | 19.6049 | 19.600049

The instantaneous velocity at= 2 is 19.6 nj's.

2. Awrench released from a state of rest at time 0 travels a distance(r) = 4.92 m ins seconds. Estimate the instantaneous
velocity atr = 3.

SOLUTION To find the instantaneous velocity, we compute the average velocities:

time interval | [3,3.01] | [3,3.005] | [3,3.001] | [3,3.00001]
average velocity| 29.449 | 29.4245 | 29.4049 | 29.400049

The instantaneous velocity is approximately 29 /4m
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3. Letv = 20+/T as in Example 2. Estimate the instantaneous rate of changevith respect ta” whenT = 300 K.

SOLUTION
T interval [300, 300.01] [300, 300.005]
average rate of change  0.577345 0.577348
T interval [300,300.001] | [300,300.00001]
average rate of change  0.57735 0.57735

The instantaneous rate of change is approximately 0.57735-1K).

4. ComputeAy/Ax for the interval[2, 5], wherey = 4x — 9. What is the instantaneous rate of change @fith respect tor at
x =27

SOLUTION Ay/Ax = ((4(5) —9) — (4(2) — 9))/(5 — 2) = 4. Because the graph of = 4x — 9 is a line with slope 4, the
average rate of change pfcalculated over any interval will be equal to 4; hence, the instantaneous rate of change atithaiso
be equal tat.

In Exercises 5 and 6, a stone is tossed vertically into the air from ground level with an initial velo¢ynos Its height at time
ish(r) = 15t —4.912 m.

5. Compute the stone’s average velocity over the time intdfva) 2.5] and indicate the corresponding secant line on a sketch of
the graph ofi(z).
SOLUTION The average velocity is equal to
h(2.5) —h(0.5)

0.3.
2

The secant line is plotted with(z) below.

h

[

0

8
6
4
2

1
| 05 1 15 2 25 3

6. Compute the stone’s average velocity over the time intefals01], [1, 1.001], [1, 1.0001] and[0.99, 1], [0.999, 1], [0.9999, 1],
and then estimate the instantaneous velocity-atl.

SOLUTION  With A(r) = 15t — 4.9¢2, the average velocity over the time interyal, ,] is given by

Ah_ h(t2) —h (1)
At -t

time interval [1,1.01] | [1,1.001] | [1,1.0001] | [0.99,1] | [0.999,1] | [0.9999, 1]
average velocity| 5.151 5.1951 5.1995 5.249 5.2049 5.2005

The instantaneous velocity at= 1 second is 5.2 nfs.

7. With an initial deposit of $00, the balance in a bank account aftgrears isf(¢) = 100(1.08)" dollars.
(@) What are the units of the rate of changefaf)?
(b) Find the average rate of change of@0.5] and|0, 1].
(c) Estimate the instantaneous rate of change=at).5 by computing the average rate of change over intervals to the left and right
oft =0.5.
SOLUTION

(a) The units of the rate of change ¢fz) are dollargyear or $yr.
(b) The average rate of change 6fr) = 100(1.08)" over the time interval; , z3] is given by

Af _ f)—f )

At h—1n

time interval [0,.5] | [0,1]

average rate of change 7.8461 8
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(©)
time interval [0.5,0.51] | [0.5,0.501] | [0.5,0.5001]
average rate of change 8.0011 7.9983 7.9981
time interval [0.49,0.5] | [0.499,0.5] | [0.4999,0.5]
average rate of change 7.9949 7.9977 7.998

The rate of change at= 0.5 is approximately $8/yr.

8. The position of a particle at timeis s(¢) = 1> + . Compute the average velocity over the time intefvad] and estimate the
instantaneous velocity at= 1.

SOLUTION The average velocity over the time interyal4] is

s@-s) _68-2
4-1 3

To estimate the instantaneous velocity at 1, we examine the following table.

time interval [1,1.01] | [1,1.001]

4.0030

[1,1.0001]
4.0003

[0.99, 1]
3.9701

[0.999, 1]
3.9970

[0.9999, 1]
3.9997

average rate of changg 4.0301

The rate of change at= 1 is approximately 4.

9. & Figure 1 shows the estimated numidérof Internet users in Chile, based on data from the United Nations Statistics
Division.
(a) Estimate the rate of change &fatt = 2003.5.
(b) Does the rate of change increase or decreasénaseases? Explain graphically.
(c) Let R be the average rate of change of28101, 2005]. ComputeR.
(d) Is the rate of change at= 2002 greater than or less than the average R2eExplain graphically.

N (Internet users in Chile in millions)

~

45 o

4.0 =

3.5 =

1 (years)
2001 2002 2003 2004 2005

FIGURE 1

SOLUTION

(a) The tangent line shown in Figure 1 appears to pass through the 26 3.75) and (2005, 4.6). Thus, the rate of change of
N att = 2003.5 is approximately

4.6 -3.75

—— =0.283
2005 — 2002

million Internet users per year.

(b) Ast increases, we move from left to right along the graph in Figure 1. Moreover, as we move from left to right along the graph,
the slope of the tangent line decreases. Thus, the rate of change decredseseases.

(c) The graph ofN(¢) appear to pass through the poir&01, 3.1) and (2005, 4.5). Thus, the average rate of change over
[2001, 2005] is approximately

45-3.1

=——=035
2005 — 2001

million Internet users per year.

(d) For the figure below, we see that the slope of the tangent line=a2002 is larger than the slope of the secant line through the
endpoints of the graph df(¢). Thus, the rate of changeat 2002 is greater than the average rate of chaRge
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3.0

+ + + + +— X
2001 2002 2003 2004 2005

10. The atmospheric temperature T (in °C) at altitude. meters above a certain point on earth7is= 15 — 0.0065% for
h < 12,000 m. What are the average and instantaneous rates of chaffgeitth respect td:? Why are they the same? Sketch the
graph ofT for h < 12,000.

SOLUTION The average and instantaneous rates of changewith respect to: are both—0.0065°C/m. The rates of change
are the same becaugeis a linear function of: with slope—0.0065.

Y Temp (°C)

i

2000

Altitude (m)
8000 12,000
+ . —x
10,000

4000
6000

In Exercises 11-18, estimate the instantaneous rate of ehantpe point indicated.

11. P(x) =3x%2 -5, x=2

SOLUTION
x interval [2,2.01] | [2,2.001] | [2,2.0001] | [1.99,2] | [1.999,2] | [1.9999,2]
average rate of changg 12.03 12.003 12.0003 11.97 11.997 11.9997
The rate of change at = 2 is approximately 12.
12. f()=12t -7, t=—4
SOLUTION
¢ interval [—4,-3.99] | [—4,-3.999] | [-4,—3.9999]
average rate of change 12 12 12
t interval [—4.01,—4] | [—4.001,—4] | [—4.0001, —4]
average rate of change 12 12 12
The rate of change at= —4 is 12, as the graph of = f(¢) is a line with slope 12.
1
13. = —; =2
y) =< eI
SOLUTION
x interval [2,2.01] | [2.2.001] | [2,2.0001] | [1.99,2] | [1.999,2] | [1.9999, 2]
average rate of changg —0.0623 —0.0625 —0.0625 —0.0627 | —0.0625 —0.0625
The rate of change at = 2 is approximately-0.06.
14. yt) = V3t +1;, t=1
SOLUTION
¢ interval [1,1.01] | [1,1.001] | [1,1.0001] | [0.99,1] | [0.999,1] | [0.9999, 1]
average rate of changg 0.7486 0.7499 0.7500 0.7514 0.7501 0.7500

The rate of change at= 1 is approximately 0.75.




SECTION 2.1 | Limits, Rates of Change, and Tangent Lines 79

15. f(x)=e*; x=0
SOLUTION

x interval [<0.01,0] | [-0.001,0] | [-0.0001,0] | [0,0.01] | [0,0.001] | [0,0.0001]

average rate of changg 0.9950 0.9995 0.99995 1.0050 1.0005 1.00005

The rate of change at = 0 is approximatelyl.00.
16. f(x) =e*; x=c¢e
SOLUTION

x interval [e —0.01,¢] | [e —0.001, ] | [e — 0.0001, ¢] | [e,e + 0.01] | [e, e + 0.001] | [e, e 4+ 0.0001]

average rate of change 15.0787 15.1467 15.1535 15.2303 15.1618 15.1550

The rate of change at = e is approximatelyi5.15.
17. f(x)=Inx; x=3
SOLUTION

x interval [2.99,3] | [2.999,3] | [2.9999,3] | [3.3.01] | [3.3.001] | [3.3.0001]

average rate of changp 0.33389 | 0.33339 0.33334 0.33278 | 0.33328 0.33333

The rate of change at = 3 is approximately.333.

18. f(x)=tam!x; x :%
SOLUTION
x interval [Z —0.0LZ]|[Z —0.001, Z]|[% —0.0001. Z]|[%.Z +0.01] | [%. Z +0.001] | [%. Z + 0.0001]
average rate of change 0.6215 0.6188 0.6185 0.6155 0.6182 0.6185

The rate of change at = Z is approximately).619.

19. The height (in centimeters) at timdin seconds) of a small mass oscillating at the end of a spria¢f)s= 8 cog12x¢).
(a) Calculate the mass’s average velocity over the time intefoafs1] and[3, 3.5].
(b) Estimate its instantaneous velocityrat 3.

SOLUTION
AR h() ~h(1)

(a) The average velocity over the time interyal, z2] is given byE PR
2—1

time interval [0,0.1] [3,3.5]

average velocity| —144.721 cm/s | 0 cm/s

(b)

time interval | [3,3.0001] | [3,3.00001] | [3,3.000001] | [2.9999,3] | [2.99999,3] | [2.999999, 3]
average velocity| —0.5685 —0.05685 —0.005685 0.5685 0.05685 0.005685

The instantaneous velocity at= 3 seconds is approximately O ¢fs.
20. The numberP(¢) of E. colicells at timer (hours) in a petri dish is plotted in Figure 2.

(a) Calculate the average rate of changePgf) over the time intervall, 3] and draw the corresponding secant line.
(b) Estimate the slope: of the line in Figure 2. What does represent?

P(t)
10,000 /
8,000
6,000
/
4,000
2,000
1,0001
1 2 3
t (hours

FIGURE 2 Number ofE. colicells at timer.
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SOLUTION
(a) Looking at the graph, we can estima®¢1) = 2000 and P (3) = 8000. Assuming these values &f(¢), the average rate of
change is
P(3)— P(1) _ 6000
3-1 2

= 3000 cells/hour.

The secant line is here:

P(t
10000 /
8,000
6,000
4,000

2,000
1,0001

1 2 3
t (hours

(b) The line in Figure 2 goes through two points with approximate coordi@at@900) and(2.5, 4000). This line has approximate
slope

4000 — 2000 4000
T 25-1 3

cells/hour.

m is close to the slope of the line tangent to the grapt? @f) att = 1, and som represents the instantaneous rate of change of
P(¢t) att = 1 hour.

21. & Assume that the perio@ (in seconds) of a pendulum (the time required for a complete back-and-forth cycle) is
T = %ﬁ whereL is the pendulum’s length (in meters).

(@) What are the units for the rate of changefoivith respect ta.? Explain what this rate measures.

(b) Which quantities are represented by the slopes of lihead B in Figure 3?

(c) Estimate the instantaneous rate of chang® efith respect ta. whenZ = 3 m.

Period (s)

Length (m)

FIGURE 3 The periodT is the time required for a pendulum to swing back and forth.

SOLUTION

(a) The units for the rate of change dfwith respect tal. are seconds per meter. This rate measures the sensitivity of the period
of the pendulum to a change in the length of the pendulum.

(b) The slope of the lind represents the average rate of chandgg from L = 1 mto L = 3 m. The slope of the lind represents
the instantaneous rate of changeloft L = 3 m.

(©

time interval | [3,3.01] | [3,3.001] | [3,3.0001] | [2.99,3] | [2.999,3] | [2.9999, 3]
average velocity| 0.4327 0.4330 0.4330 0.4334 0.4330 0.4330

The instantaneous rate of changd.at 1 mis approximately 0.4330/s.

22. The graphs in Figure 4 represent the positions of moving particles as functions of time.

(a) Do the instantaneous velocities at timest,, t3 in (A) form an increasing or a decreasing sequence?
(b) Is the particle speeding up or slowing down in (A)?

(c) Is the particle speeding up or slowing down in (B)?
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Distance
Distance

Time

(8)
FIGURE 4

SOLUTION

(a) As the value of the independent variable increases, we note that the slope of the tangent lines decreases. Since Figure 4
displays position as a function of time, the slope of each tangent line is equal to the velocity of the particle; consequently, the
velocities aty, 15, t3 form a decreasing sequence.

(b) Based on the solution to part (a), the velocity of the particle is decreasing; hence, the particle is slowing down.

(c) If we were to draw several lines tangent to the graph in Figure 4(B), we would find that the slopes would be increasing.
Accordingly, the velocity of the particle associated with Figure 4(B) is increasing, and the particle is speeding up.

23. An advertising campaign boosted sales of Crunchy Crust frqueza to a peak level afy dollars per month. A
marketing study showed that aftemonths, monthly sales declined to

1
S(t) = Sog(t), whereg(t) = .
(1) = Sog () g (1) N
Do sales decline more slowly or more rapidly as time increases? Answer by referring to a sketch of the gtaptogéther with
several tangent lines.

SOLUTION We notice from the figure below that, as time increases, the slopes of the tangent lines to the graphatome
less negative. Thus, sales decline more slowly as time increases.

24. The fraction of a city’s population infected by a flu virus is plotted as a function of time (in weeks) in Figure 5.
(a) Which quantities are represented by the slopes of lihaad B? Estimate these slopes.

(b) Is the flu spreading more rapidly at= 1, 2, or 3?

(c) Is the flu spreading more rapidly at= 4, 5, or 6?

Fraction infectel
0.3+ s
B 2
024 g
7
/|
A7 i
0.1+ Al |
s i
s 1
7 |
: i
+ + + + + Weeks
1 2 3 4 5 6

FIGURE 5

SOLUTION

(a) The slope of lined is the average rate of change over the intefp¥ab], whereas the slope of the ling is the instantaneous
rate of change at = 6. Thus, the slope of the lind ~ (0.28 — 0.19)/2 = 0.045/week, whereas the slope of the life ~

(0.28 — 0.15)/6 = 0.0217/week.

(b) Among timest = 1, 2, 3, the flu is spreading most rapidly at= 3 since the slope is greatest at that instant; hence, the rate of
change is greatest at that instant.

(c) Among timest = 4,5, 6, the flu is spreading most rapidly at= 4 since the slope is greatest at that instant; hence, the rate of
change is greatest at that instant.
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25. The graphs in Figure 6 represent the position§moving particles as functions of timeMatch each graph with a description:
(a) Speeding up

(b) Speeding up and then slowing down

(c) Slowing down

(d) Slowing down and then speeding up

s s s s
L///////[ \////////r L///////t L///////r
(A) (B) ©) (D)

FIGURE 6

SOLUTION When a particle is speeding up over a time interval, its graph is bent upward over that interval. When a patrticle is
slowing down, its graph is bent downward over that interval. Accordingly,

¢ In graph (A), the particle is (c) slowing down.

¢ In graph (B), the particle is (b) speeding up and then slowing down.

¢ In graph (C), the particle is (d) slowing down and then speeding up.

¢ In graph (D), the particle is (a) speeding up.
26. An epidemiologist finds that the percentayyér) of susceptible children who were infected on dagluring the first three
weeks of a measles outbreak is given, to a reasonable approximation, by the formula (Figure 7)

100¢2
N@t) =

t3 + 52 — 100z + 380

% Infected
20

15
10

2 4 6 8 1012 1416 182C
Time (days
FIGURE 7 Graph of N(¢).

(a) Draw the secant line whose slope is the average rate of change in infected children over the {dtefvatsd[12, 14]. Then
compute these average rates (in units of percent per day).

(b) Is the rate of decline greaterat 8 ort = 16?
(c) Estimate the rate of change &f(¢) on day 12.

SOLUTION

@ % Infected
20

15
10

5

5 10 15 2

Time (days)
The average rate of change 8fr) over the interval between day 4 and day 6 is given by
AN  N(@6)—-N#) 0
AL 64 = 3.776%/day.

Similarly, we calculate the average rate of chang& @) over the interval between day 12 and day 14 as

AN _ N(14)-N(12) .
T o = 0-7983%/day.
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(b) The slope of the tangent line at= 8 would be more negative than the slope of the tangent line=at16. Thus, the rate of
decline is greater at= 8 than att = 16.

(©)
time interval [12,12.5] | [12,12.2] | [12,12.01] | [12,12.001]
average rate of changg —0.9288 —0.9598 —0.9805 —0.9815
time interval [11.5,12] | [11.8,12] | [11.99,12] | [11.999, 12]
average rate of change —1.0402 | —1.0043 —0.9827 —0.9817

The instantaneous rate of changeNaf) on day 12 is-0.9816%/day.

27. The fungusFusarium exosporiunnfects a field of flax plants through the roots and causes the plants to wilt. Eventually, the
entire field is infected. The percentagé ) of infected plants as a function of timé€in days) since planting is shown in Figure 8.

(@) What are the units of the rate of changefaf) with respect ta? What does this rate measure?

(b) Use the graph to rank (from smallest to largest) the average infection rates over the ifeh2j]420, 32], and[40, 52].

(c) Use the following table to compute the average rates of infection over the intgi9ad9], [40, 50], [30, 50].

Days 0 10 20 30 40 50 60
Percentinfected O 18 56 82 91 96 98

(d) Draw the tangent line at= 40 and estimate its slope.

Percent infected-90 L
80 /
60

40

20

10 20 30 40 50 6
Days after planting

FIGURE 8

SOLUTION
(a) The units of the rate of change ¢fr) with respect ta are percentday or %/d. This rate measures how quickly the population
of flax plants is becoming infected.

(b) From smallest to largest, the average rates of infection are those over the invaes3, [0, 12], [20, 32]. This is because the
slopes of the secant lines over these intervals are arranged from smallest to largest.

(c) The average rates of infection over the interJads 40], [40, 50], [30, 50] are 0.9, 0.5, 0.7 %, respectively.

(d) The tangent line sketched in the graph below appears to pass through the(p@isty and (40, 91). The estimate of the
instantaneous rate of infectionzat 40 days is therefore

91 — 80 11
— — =0.55%)/d.
40 — 20 20
100
L
80 7

o/
40 /
20

10 20 30 40 50 6

28. & Let v = 20+/T as in Example 2. Is the rate of change wfwith respect tol' greater at low temperatures or high
temperatures? Explain in terms of the graph.

SOLUTION

v (m/s)
350
300

200
150
100

50

T (K)
50 100 150 200 250 300
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As the graph progresses to the right, the graph bends progressively downward, meaning that the slope of the tangent lines becomes
smaller. This means that the rate of change wfith respect tdl" is lower at high temperatures.

29. & If an object in linear motion (but with changing velocity) @gAs meters inA¢ seconds, then its average velocity is
vo = As/At m/s. Show that it would cover the same distance if it traveled at constant velgaityer the same time interval. This
justifies our callingAs/Ar theaverage velocity

SOLUTION At constant velocity, the distance traveled is equal to velocity times time, so an object moving at constantwyglocity
for At seconds travelsg§t meters. Sinceg = As/At, we find

As
distance travelee- vyét = (A—;) At = As

So the object covers the same distanseby traveling at constant velocityp.

30. & Sketch the graph of (x) = x(1 — x) over|[0, 1]. Refer to the graph and, without making any computations, find:
(@) The average rate of change oy@rl1]

(b) The (instantaneous) rate of changer at %

(c) The values ofx at which the rate of change is positive

SOLUTION

0.25
0.2
0.15
0.1
0.05
| 02 04 06 08 1.

(@ f(0) = f(1), so there is ho change betweer= 0 andx = 1. The average rate of change is zero.
(b) The tangent line to the graph ¢f(x) is horizontal atx = %; the instantaneous rate of change is zero at this point.

(c) The rate of change is positive at all points where the graph is rising, because the slope of the tangent line is positive at these
points. This is so for alk betweeny = 0 andx = 0.5.

31. & Which graph in Figure 9 has the following property: Foralthe average rate of change oyerx] is greater than the

instantaneous rate of changexaExplain.
X X

(A) (B)
FIGURE 9

SOLUTION The average rate of change oJ@rx] is greater than the instantaneous rate of change é). The graph in (B)
bends downward, so the slope of the secant line thredgh and(x, f(x)) is larger than the slope of the tangent lin€at f (x)).

Further Insights and Challenges
32. The height of a projectile fired in the air vertically with initial velocity m/s is
h(t) = 25t — 4.9t m.

(@) Computei(1). Show thati(¢) — h(1) can be factored witky — 1) as a factor.
(b) Using part (a), show that the average velocity over the intdtva] is 20.1 — 4.9z.

(c) Use this formula to find the average velocity over several interdald with ¢ close tol. Then estimate the instantaneous
velocity at timer = 1.
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SOLUTION
(@) With h(r) = 25t — 4.91%, we havei(1) = 20.1 m, so
h(t) = h(1) = —4.91% + 25t — 20.1.
Factoring the quadratic, we obtain
h(t) — h(1) = (t — 1)(—4.9¢ + 20.1).
(b) The average velocity over the intenjal 7] is

h(t) = h(1) _ (t — 1)(—4.9 + 20.1)
r—1 r—1

=20.1 —4.9t.

(c) t 1.01 1.001 1.0001 1.00001
average velocity ovel, ¢] | 15.151 | 15.1951| 15.19951| 15.199951

The instantaneous velocity is approximately 15,2nPluggingt = 1 second into the formula in (b) yield9.1 —4.9(1) = 15.2
m/s exactly.

33. Let O(r) = 2. As in the previous exercise, find a formula for the average rate of changewér the interva[l, r] and use it
to estimate the instantaneous rate of change=atl. Repeat for the intervd®, t] and estimate the rate of change at 2.

SOLUTION The average rate of change is

o -0 _ -1

r—1 r—1

Applying the difference of squares formula gives that the average rate of chafige-id)(t — 1))/(t — 1) = (¢t + 1) for¢t # 1.
Ast gets closer td, this gets closer td + 1 = 2. The instantaneous rate of change is 2.
Forto = 2, the average rate of change is

01)—0(2) _1>—4

t—2 t—2

)

which simplifies tor + 2 for r # 2. Ast approaches 2, the average rate of change approaches 4. The instantaneous rate of chang
is therefore 4.

34. Show that the average rate of changeféf) = x3 over[l, x] is equal to
2+ x+1.

Use this to estimate the instantaneous rate of changéfatx = 1.

SOLUTION The average rate of change is

f) =) _ xP—1

x—1 x—1"

Factoring the numerator as the difference of cubes means the average rate of change is

x=D&2+x+1)
x—1

=x2+x+1
(for all x # 1). The closerx gets tol, the closer the average rate of change getéte- 1 + 1 = 3. The instantaneous rate of

change is 3.

35. Find a formula for the average rate of changeféf) = x3 over[2, x] and use it to estimate the instantaneous rate of change
atx = 2.

SOLUTION The average rate of change is

JS(x)— f(2) _X3—8
x—=2 T ox=2"

Applying the difference of cubes formula to the numerator, we find that the average rate of change is

(P42 + 4 -2 _

x2+2x+4
x—=2

for x # 2. The closen gets ta2, the closer the average rate of change geféte 2(2) + 4 = 12.
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36. & LetT = %ﬁ as in Exercise 21. The numbers in the second column of the following table are increasing, and those
in the last column are decreasing. Explain why in terms of the gragh & a function ofL. Also, explain graphically why the
instantaneous rate of changelat= 3 lies between 0.4329 and 0.4331.

Average Rates of Change Bfwith Respect td.

Average rate Average rate
Interval of change Interval of change
[3,3.2] 0.42603 [2.8, 3] 0.44048
[3,3.1] 0.42946 [2.9,3] 0.43668
[3,3.001] 0.43298 [2.999, 3] 0.43305
[3,3.0005] 0.43299 [2.9995, 3] 0.43303

SOLUTION  Since the average rate of change is increasing on the intgf:dl$ as L get close t®3, we know that the slopes of

the secant lines between points on the graph over these intervals are increasing. The more rows we add with smaller intervals, the
greater the average rate of change. This means that the instantaneous rate of change is probably greater than all of the numbers in
this column.

Likewise, since the average rate of changddsreasingon the intervalgL, 3] asL gets closer t3, we know that the slopes
of the secant lines between points over these intervals are decreasing. This means that the instantaneous rate of change is probably
less than all the numbers in this column.

The tangent slope is somewhere between the greatest value in the first column and the least value in the second column. Hence,
itis betweerD.43299 and0.43303. The first column underestimates the instantaneous rate of change by secant slopes; this estimate
improves ad. decreases towarl = 3. The second column overestimates the instantaneous rate of change by secant slopes; this
estimate improves ak increases toward = 3.

2.2 Limits: A Numerical and Graphical Approach

Preliminary Questions
1. What is the limit of f(x) = 1 asx — n?

SOLUTION limy—, 1 =1.
2. What is the limit ofg(¢) =t ast - n?
SOLUTION lim;—y;t = 7.

3. Is lim 20 equal tol0 or 20?
x—10

SOLUTION  limy—1020 = 20.
4. Can f(x) approach a limitas — ¢ if f(c) is undefined? If so, give an example.

SOLUTION Yes. The limit of a functionf asx — ¢ does not depend on what happetis = ¢, only on the behavior of as
x — ¢. As an example, consider the function

x2—1

J(x) =

x—1"
The function is clearly not defined at= 1 but

2

. . -1 .
Iim f(x)= lim al = limx+1) =2.
x—1 x—>1 x—1 x—1

5. What does the following table suggest about ligi(x) and Iim f(x)?
x—>1— x—1+

x 0.9 099 099 1.1 1.01 1.001
f(x) | 7 25 4317 3.0126 3.0047 3.00011

SOLUTION The values in the table suggest that}im;_ f(x) = co and limy_ 1+ f(x) = 3.

6. Can you tell whether Iigwf(x) exists from a plot off (x) for x > 5? Explain.
x—

SOLUTION No. By examining values of'(x) for x close to but greater than 5, we can determine whether the one-sided limit
limx_s54+ f(x) exists. To determine whether lim,5 f(x) exists, we must examine value ¢fx) on both sides ok = 5.
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7. If you know in advance that Iignf(x) exists, can you determine its value from a plotfa) for all x > 5?
x—

SOLUTION Yes. Iflimy_,5 f(x) exists, then both one-sided limits must exist and be equal.

Exercises
In Exercises 1-4, fill in the tables and guess the value of the limit.
. x3-1
1. lim f(x), wheref(x) = 5 .
x—1 xc—1
x fx) x fx)
1.002 0.998
1.001 0.999
1.0005 0.9995
1.00001 0.99999
SOLUTION
x 0.998 0.999 0.9995 | 0.99999 | 1.00001 | 1.0005 1.001 1.002

f(x) | 1.498501| 1.499250| 1.499625| 1.499993| 1.500008| 1.500375| 1.500750| 1.501500

The limitasx — 1is 3.

. cost — 1 . .
2. t“moh(t)’ whereh(t) = 2 Note thati(z) is even; that ish(t) = h(—t).
—
t 40.002 | £0.0001 | £0.00005 | £0.00001
h(1)
SOLUTION
t 40.002 +0.0001
h(t) | —0.499999833333 | —0.499999999583
t +0.00005 40.00001
h(t) | —0.499999999896 | —0.500000000000

The limitast — 0is—1.

2
. ye—y-=2
3. lim ,wh = .
y' 2.f()’) eref(y) 21 y—6

y ) y )

2.002 1.998
2.001 1.999
2.0001 1.9999

SOLUTION

y 1.998 1.999 1.9999 2.0001 2.001 2.02
f(»y) | 0.59984| 0.59992| 0.599992| 0.600008| 0.60008 | 0.601594

The limitasy — 2is 3.
4. lim f(x), wheref(x) = xInx.
x—>0+

x 1|05 0.1{ 005 0.01|0.005| 0.001
J(x)
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SOLUTION

X 1.0 0.5 0.1 0.05 0.01 0.005 0.001

f(x) | 0 | —0.34657 | —0.23026 | —0.14979 | —0.04605 | —0.02649 | —0.00691

The limit asx — 04+ is0.

5. Determine lim f(x) for f(x) asin Figure 1.
x—0.5

o5 N

FIGURE 1

SOLUTION The graph suggests tha{x) — 1.5 asx — 0.5.

6. Determine lim g(x) for g(x) as in Figure 2.
x—0.5

05 \ !

FIGURE 2

SOLUTION The graph suggests thatx) — 1.5 asx — 0.5. The valueg(0.5), which happens to bg, does not affect the limit.
In Exercises 7 and 8, evaluate the limit.

7. lim x
x—>21

SOLUTION Asx — 21, f(x) = x — 21. You can see this, for example, on the graptyef) = x.

8. lim /3

x—4.2
SOLUTION  The graph off(x) = +/3 is a horizontal linef(x) = +/3 for all values ofx, so the limit is also equal t¢/3.
In Exercises 9-16, verify each limit using the limit definition. For example, in Exercise 9, shddnthal2| can be made as small
as desired by taking close to4.
9. lim 3x =12
x—>4
SOLUTION |3x — 12] = 3|x — 4|. |3x — 12| can be made arbitrarily small by makingclose enough td, thus makingx — 4|
small.
10. Iim 3=3

x—>5
SOLUTION | f(x) — 3] = |3 — 3] = 0 for all values ofx so f(x) — 3 is already smaller than any positive numberas- 5.
11. Iim (5x +2) =17
x—3
SOLUTION |(5x 4+ 2) — 17] = |5x — 15| = 5|x — 3|. Therefore, if you makéx — 3| small enough, you can mak&x + 2) — 17|
as small as desired.
12. lim (7x —4) =10
x—2
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SOLUTION As x — 2, note that|(7x —4) — 10| = |7x — 14| = 7|x —2|. If you make|x — 2| small enough, you can make
[(7x — 4) — 10| as small as desired.

13. lim x2 =0

x—0

SOLUTION Asx — 0, we havelx? — 0| = |x + 0||x — 0|. To simplify things, suppose thét| < 1, so that|x + 0[|x — 0| =
|x||x| < |x|. By making|x| sufficiently small, so thatx + 0]|x — 0] = x2 is even smaller, you can make? — 0| as small as
desired.

14. lim 3x2-9) = -9
x—0
SOLUTION  [3x2 — 9 — (=9)| = |3x2| = 3|x2|. If you make|x| < 1, |x2| < |x], so that makindx — 0| small enough can make
|3x2 — 9 — (—9)| as small as desired.
15. lim (4x2 +2x +5) =5
x—0
SOLUTION Asx — 0, we haveldx? 4+ 2x + 5 — 5| = |[4x2 + 2x| = |x||4x + 2|. If |x| < 1, [4x + 2| can be no bigger thaf

so|x||4x + 2| < 6|x|. Therefore, by makingx — 0| = |x| sufficiently small, you can makdx? + 2x + 5 — 5| = |x||4x + 2| as
small as desired.

16. lim (x> 4+ 12) = 12
x—0

SOLUTION  |(x3 4+ 12) — 12| = |x3]. If we make|x| < 1, then|x3| < |x|. Therefore, by makingx — 0| = |x| sufficiently small,
we can maké(x3 + 12) — 12| as small as desired.

In Exercises 17-36, estimate the limit numerically or state that the limit does not exist. If infinite, state whether the one-sided limit:
are oo or —oo.

17, 1im Y* !

x—>1 X —

SOLUTION

X 0.9995 | 0.99999 | 1.00001| 1.0005
f(x) | 0.500063| 0.500001| 0.49999| 0.499938

The limitasx — 1is 3.

. 2x2 -3
18. lim 2 —°7
x—>—4 Xx+4

SOLUTION

x —4.001 —4.0001 —3.9999 —3.999
f(x) | —16.002 | —16.0002 | —15.9998 | —15.998

The limit asx — —4 is —16.
2
. -6
x—>2 X% —x—2

SOLUTION

X 1.999 1.99999 | 2.00001 2.001
f(x) | 1.666889| 1.666669| 1.666664 | 1.666445

The limitasx — 2is 3.
3_2x2-9

20. lim ==X~
x—>3 x2-2x-3

SOLUTION

X 2.99 2.995 3.005 3.01
f(x) | 3.741880| 3.745939| 3.754064| 3.758130

The limit asx — 3is3.75.
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. sin2
21. lim al
x—0 X

SOLUTION

The limitasx — 0is 2.

. sin5
22, lim 2%
x—0 X

SOLUTION

The limitasx — 0is5.

23. i
9@0 0

SOLUTION

cosf — 1

The limitasf — 0is 0.

. sinx
lim —
x—>0 Xx

24.

SOLUTION

X 001 | —0.005 | 0.005 0.01
f(x) | 1.999867| 1.999967 | 1.999967| 1.999867
X —0.01 | —0.005 | 0.005 0.01
f(x) | 4.997917| 4.999479| 4.999479| 4.997917
0 ~0.05 | —0.001 | 0.001 0.05
£(6) | 0.0249948 | 0.0005 | —0.0005 | —0.0249948
X ~0.01 ~0.001 | —0.0001 | 0.0001 | 0.001 0.01
F(x) | —99.9983 | —999.9998 | —10000.0 | 10000.0 | 999.9998 | 99.9983

The limit does not exist. As — 0—, f(x) — —oo; similarly, asx — 0+, f(x) — oo.

25. lim

SOLUTION

— X

26. lim

x—>1-x—1

SOLUTION

x—4 (x —4)3

Asx — 1—, f(x) > —oc.

27. lim

SOLUTION

x—>34+x2-9

X 3,99 | 3.999 | 3.9999 | 4.0001| 4.001 | 4.01
f(x) | =106 | —10° | —10'%2 | 10!2 10° | 10°
The limit does not exist. As — 4—, f(x) — —oo; similarly, asx — 4+, f(x) — oo.
X 0.99 0.999 0.9999 | 0.99999
f(x) | =201 | —2001 | —20001 | —200001
X 3.01 3.001 3.0001 3.00001
f(x) | —16.473 | —166.473 | —1666.473 | —16666.473

Asx — 34, f(x) - —oo.
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h

h

28. lim
h—0

SOLUTION

h —0.05 —0.001 | —0.0001 | 0.0001 0.001 0.05
f(h) | 1.06898| 1.09801| 1.09855 | 1.09867 | 1.09922 | 1.12935

The limit ash — 0 is approximately 1.099. (The exact answer i3.)n

29. lim sinh cosl
h—0 h

SOLUTION

h —0.01 —0.001 —0.0001 0.0001 0.001 0.01
f(h) | —0.008623 | —0.000562 | 0.000095| —0.000095 | 0.000562| 0.008623

The limitasih — 0is 0.

1

30. lim cos—

h—0 h
SOLUTION

h +0.1 £0.01 | £0.001 | =£0.0001
F(h) | —0.839072 | 0.862319 | 0.562379 | —0.952155

The limit does not exist since ck/ ) oscillates infinitely often a8 — 0.
31. lim |x|¥
x—0

SOLUTION

X —0.05 —0.001 —0.00001 | 0.00001 0.001 0.05
f(x) | 1.161586| 1.006932| 1.000115| 0.999885| 0.993116| 0.860892

The limitasx — 0is 1.
sec!x
32. lim
x—>14+ /x —1

SOLUTION

X 1.05 1.01 1.005 | 1.001
f(x) | 1.3857 | 1.4084 | 1.4113| 1.4136

The limit asx — 1+ is approximatelyl .414. (The exact answer ig/2.)

33. lim
t—elnt —1

SOLUTION

r e—0.01 | e—0.001 | e—0.0001 | e+ 0.0001 | e+ 0.001 | e+ 0.01
f() | 2713279 | 2.717782| 2.718232 | 2.718332 | 2.718782 | 2.723279

The limit ast — e is approximately 2.718. (The exact answer.js
34. lim (1 +r)V/7
r—0

SOLUTION

r —0.01 —0.001 —0.0001 0.0001 0.001 0.01
f(r) | 2731999 2.719642| 2.718418| 2.718146| 2.716924| 2.704814

The limit asr — 0 is approximately 2.718. (The exact answer.}s
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. tanlx
35. lim I
x—>1—cos~ ! x

SOLUTION

x | 0.999 | 0.9999 | 0.99999 | 0.999999| 0.9999999
f(x) | 17.549 | 55.532| 175.619| 555.360 | 1756.204

The limit asx — 1— does not exist.

 tanlx—x
x=>0sSIn” " x —x
SOLUTION

X —0.01 —0.001 0.001 0.01
f(x) | —1.999791 | —2.000066 | —2.000066 | —1.999791

The limit asx — 0 is approximately-2.00. (The exact answer is2.)

37. Thegreatest integer functionis defined by{x] = n, wheren is the unique integer such that< x < n + 1. Sketch the graph
of y = [x]. Calculate, for an integer:

@ lim [ (0 fim [x]

SOLUTION Here is a graph of the greatest integer function:

2 ——o0
1 ——o0
X
-1 1 2 3

(a) From the graph, we see that, foan integer,
xl_l)nﬂ]_[x] =c—1
(b) From the graph, we see that, foan integer,
lim [x] =c.

x—>c+

38. Determine the one-sided limits at= 1, 2, and 4 of the functiog (x) shown in Figure 3, and state whether the limit exists at
these points.

Lo

1 2 3 4 5
FIGURE 3

SOLUTION

e At ¢ = 1, the left-hand limit isx_l)ign_ g(x) = 3, whereas the right-hand limit ixs_)lliJrrng(x) = 1. Accordingly, the two-sided
limit does not exist at = 1.

e At ¢ = 2, the left-hand limit isx_l)ign_ g(x) = 2, whereas the right-hand limit ixs_)zliJl;ng(x) = 1. Accordingly, the two-sided
limit does not exist at = 2.

e At ¢ = 4, the left-hand limit isx_ljm g(x) = 2, whereas the right-hand limit Ls_)ﬂng(x) = 2. Accordingly, the two-sided
limit exists atc = 4 and equals 2.
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In Exercises 39-46, determine the one-sided limits numerically or graphically. If infinite, state whether the one-sided ltits are
or —oo, and describe the corresponding vertical asymptote. In Exercisgxfi& the greatest integer function defined in Exercise
37.
sin
39. lim -
x—0+ |x|

SOLUTION

X —-0.2 —0.02 0.02 0.2
f(x) | —0.993347 | —0.999933 | 0.999933| 0.993347

The left-hand limitis lim f(x) = —1, whereas the right-hand limitis limf(x) = 1.
x—>0— x—>0+
40. lim |x|'/*
x—0+

SOLUTION

x —02 | —0.1 0.15 0.2
f(x) | 3125.0| 10!° | 0.000003| 0.000320

The left-hand limit is IiBn f(x) = oo, whereas the right-hand limit is (I)iJrrnf(x) = 0. Thus, the linex = 0 is a vertical asymp-
X—>0— x—>

tote from the left for the graph of = |x|!/*.

. x —sin|x|
41. lim — =
x—>0% X
SOLUTION

X —0.1 —0.01 0.01 0.1
S(x) | 199.853| 19999.8| 0.166666| 0.166583

The left-hand limit is lim f(x) = oo, whereas the right-hand limit is limf(x) = —. Thus, the linex = 0 is a vertical
x—0— x—>0+ 6

asymptote from the left for the graph of= %lel
a2, tm X1
x—>4+ x — 4

SOLUTION The graph ofy = fc—*_'i for x near 4 is shown below. From this graph, we see that

. x+1 . . x+1
lim = —oo while lim =
x—>4— X — x—>4+ x — 4
er — 4 ; . x+1
Thus, the linex = 4 is a vertical asymptote for the graph pf= 3.

4x2 +7

43. im —
x—>—2+ x3 438

SOLUTION The graph ofy = 4x"2+87 for x near—2 is shown below. From this graph, we see that

33
4x2 47 . . 4x2 +7
im ——— =—oco while lim ———— =00
x—>—2— x3+8 x—>—2+ x3+38
Thus, the linex = —2 is a vertical asymptote for the graph pf= 4;‘32%.

+ 4 + T — X
-3.0 -25 0 -15 -10
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2

. X
44, lim NGRS
x——3+ x*—9

2 . .
SOLUTION The graph ofy = x§—9 for x near—3 is shown below. From this graph, we see that
. x2 . ) x2
lim ——— =00 while lim ——— = —o0.
x—>—3—x2-9 x—>—3+x2 -9

Thus, the linex = —3 is a vertical asymptote for the graph pf= %.

5
. -2
x—>1+ x24+x -2

SOLUTION The graph ofy = % for x nearl is shown below. From this graph, we see that

. X2 +x-2
lim S =2
x—>1+ x*+x—-2

46. lim_ cos(%(x - [x]))

x—>2

SOLUTION The graph ofy = cos(%(x — [x])) for x near2 is shown below. From this graph, we see that

lim cos(%(x—[x]))zo while  lim cos(%(x—[x])):l.

xX—>2— x—>2+

\

y
05 10 15 20 25

47. Determine the one-sided limits at= 2, 4 of the functionf(x) in Figure 4. What are the vertical asymptotesf@k)?

)~

FIGURE 4

o

SOLUTION
e Forc =2,wehave lim f(x) =occand lim f(x)= oc.
x—>2— x—>2+

e Forc =4,wehave lim f(x) =—occand lim f(x) = 10.
x—>4— x—>4+

The vertical asymptotes are the vertical lines- 2 andx = 4.
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48. Determine the infinite one- and two-sided limits in Figure 5.

SOLUTION
. limf(x)
* x—le1+f(X)
o lim f(x) =

+ Jm, /0 =

)

FIGURE 5

= —00

=0

(0]

—o0

The vertical asymptotes are the vertical lines- 1, x = 3, andx = 5.

In Exercises 49-52, sketch the graph of a function with the given limits.

9 Jm fw) =2, f00 =0 i fs) =3

SOLUTION

0. Jim /) =, i f0) =0, I fw) = o

SOLUTION

1. Jim, /(9=

SOLUTION

12 =3,

95
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2. I, fo) =, lm_fs) =3, Jim 1) = -o0

SOLUTION

10

53. Determine the one-sided limits of the functigitx) in Figure 6, at the points = 1,3, 5, 6.

y

L Y I NV}
——

1 1 2\3 4 5/6\7 8)C

FIGURE 6 Graph of f(x)

SOLUTION
- lim f) = lim f(x) =3
. Iin;_ f(x) =—00
* xlrg-i- f(X) =4
- lim f(x) =2
* xirg+ S0 =-3
- lim S = lim /() =oo

54. Does either of the two oscillating functions in Figure 7 appear to approach a limita®?

X AV%|,&AX
VT

FIGURE 7

(A)

SOLUTION (A) does not appear to approach a limitas> 0; the values of the function oscillate wildly as— 0. The values of
the function graphed in (B) seem to settldtasx — 0, so the limit seems to exist.

In Exercises 55-60, plot the function and use the graph tonesé the value of the limit.

sin50

. m .

9—0 Sin26
SOLUTION
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sin56 I .
From the graph of = S0 shown above, we see that the limitas> 0 is %
12* —1
56. lim ——
x—0 4* —1
SOLUTION

X

12* —1 - . . .
From the graph ofy = yTITE shown above, we see that the limit as— 0 is approximately 1.7925. (The exact answer is

4x —
In12/1In4))
. 2¥ —cos
57. lim R
x—0 X
SOLUTION

0.6940;

0.6935/
0.6925;

0.6920;

The limit asx — 0 is approximately 0.693. (The exact answer i2.)n

sin? 40

58. i
9—0 cosf — 1

SOLUTION

-30.0

The limit asf — 0is—32.
59 lim €c0os76 — cos56
0—0 02

SOLUTION

cos76 — cos56

72 shown above, we see that the limités— 0 is —12.

From the graph o =

60, lim sin? 26 — 6 sin46
0—0 94
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SOLUTION

sin2 26 — 6 sin46

0 shown above, we see that the limit@s— 0 is approximately 5.333. (The exact answer

From the graph of =
is1f)

61. Letn be a positive integer. For whichare the two infinite one-sided limits Iiﬂrtnl/x” equal?
x—0

SOLUTION First, suppose that is even. Then:” > 0 for all x, andxi,, > 0 for all x # 0. Hence,

. 1 . 1
Iim — = lim — =o0.
x—0— x" x—>0+ x"
1
x}’l

Next, suppose that is odd. Thenxl—,, > 0forall x > 0but = < 0forall x <0. Thus,

. 1 . 1
lim — = —o0 but lim — = o0.
x—0— x" x—0+ x"

Finally, the two infinite one-sided limits are equal whenevés even.

62. Let L(n) = xllﬂwl 1oy ﬁ) for n a positive integer. Investigate(n) numerically for several values af, and then
guess the value of df(n) in general.
SOLUTION

e We first notice that forn = 1,

1 1

1-x 1—x ’

soL(1) =0.
¢ Next, let's tryn = 3. From the table below, it appears tha3) = 1.

X 0.99 0.999 1.001 1.01
f(x) | 1.006700| 1.000667| 0.999334| 0.993367

e Forn = 6, we find

X 0.99 0.999 0.9999 1.0001 1.001 1.01
f(x) | 2.529312| 2.502919| 2.500392| 2.499375| 2.497082| 2.470980

Thus,L(6) = 2.5 = 3

i _ n—1
From these values, we conjecture tiigh) = “5—.

63. |[GU| In some cases, numerical investigations can be misleadiog,/Px) = cosZ.
(a) Does lim f(x) exist?
x—0
(b) Show, by evaluating/(x) atx = % %, %, ..., that you might be able to trick your friends into believing that the limit exists
and is equal td. = 1.
(c) Which sequence of evaluations might trick them into believing that the linfitis —1.

SOLUTION Hereis the graph of (x).
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(@) From the graph off(x), which shows that the value of(x) oscillates more and more rapidly as— 0, it follows that
Iim0 f(x) does not exist.
xX—>

(b) Notice that

T
+ = C0S+— = cos+2x7 = 1;
4 ( ) 1/2 "

1
2
1 T
fl£- ) =cost— = costdr = 1;
4 1/4
1
6

1+ = cosil = cos+6mr = 1;
1/6

and, in generalf(i%) = 1 for all integers:.
(c) Atx = £1,+1 +1 .. the value off (x) is always—1.

Further Insights and Challenges

64. Light waves of frequency. passing through a slit of width produce aFraunhofer diffraction pattern of light and dark

fringes (Figure 8). The intensity as a function of the artgle
B sin(R sinf) \2
16) = Im (W)

whereR = wa/A andI,, is a constant. Show that the intensity function is not definéd-at0. Then choose any two values fBr
and check numerically thdt0) approacheg,, as¢ — 0.

I

Incident
light waves

Slit Viewing Intensity
screen pattern

FIGURE 8 Fraunhofer diffraction pattern.

SOLUTION If you plug in6 = 0, you get a division by zero in the expression
sin (R sin 9)
Rsnd

thus, 7(0) is undefined. IfR = 2, a table of values a& — 0 follows:

0 —0.01 —0.005 0.005 0.01
1(0) | 0.998667[,, | 0.9999667,, | 0.9999667I,, | 0.9998667I;,

Thelimitasd — 0isl- I, = Iy.
If R = 3, the table becomes:

0 —0.01 —0.005 0.005 0.01
1(0) | 0.9997007,, | 0.999925,, | 0.999925[,, | 0.999700/,,

Again, the limitasd — 0is 1/, = I.

sinnf

65. Investigate@ lim numerically for several values af Then guess the value in general.
—0

SOLUTION

e Forn = 3, we have

0 —0.1 —0.01 —0.001 0.001 0.01 0.1

Sinnd | 5 955202 | 2.999550 | 2.999996 | 2.999996| 2.999550 | 2.955202
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The limitasf — 0is 3.
e Forn = —5, we have

0 —0.1 —0.01 —0.001 0.001 0.01 0.1
sinnf
g —4.794255 | —4.997917 | —4.999979 | —4.999979 | —4.997917 | —4.794255
The limitasf® — 0is—5.
. . . sinnf
¢ We surmise that, in general, |Im9— =n
b*
66. Show numerically that ||m— for b = 3,5 appears to equal By In5, where Inx is the natural logarithm. Then make a
conjecture (guess) for the value |n general and test your conjecture for two additional vabues of
SOLUTION
* x —0.1 —0.01 | —0.001 | 0.001 0.01 0.1
X _
> ! 1.486601| 1.596556| 1.608144| 1.610734| 1.622459| 1.746189
X
We have It ~ 1.6094.
X —0.1 —0.01 —0.001 0.001 0.01 0.1
X _
it 1.040415| 1.092600| 1.098009| 1.099216| 1.104669| 1.161232
X

We have I8 &~ 1.0986.

. b*—1
¢ We conjecture that lim———
x—0 X

= Inb for any positive numbeb. Here are two additional test cases.

x —0.1 —0.01 —0.001 0.001 0.01 0.1
(3)" -1
22— | —0.717735 | —0.695555 | —0.693387 | —0.692907 | —0.690750 | —0.669670
X
We have I} ~ —0.69315.
x —0.1 —0.01 | —0.001 0.001 0.01 0.1
X
—1
7 1.768287| 1.927100| 1.944018| 1.947805| 1.964966| 2.148140
X

We have IV ~ 1.9459.
xn

67. Investigate |lim
x—1 x™M

— 11 for (m, n) equal to(2, 1), (1,2), (2, 3), and(3,2). Then guess the value of the limit in general and
check your guess for two additional pairs.
SOLUTION

x 0.99 | 00999 | 1.0001 | 1.01
1
55— | 0.502513| 0.500025 | 0.499975 | 0.497512
The limitasx — 1is 3.
x | 0.99| 00999 1.0001| 1.01
x2 -1
- | 1.99 | 1.9899| 2.0001 | 2.01
o
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The limitasx — 1is 2.

X 0.99 0.9999 1.0001 1.01
x2 -1

3] 0.670011| 0.666700| 0.666633| 0.663344
3

The limitasx — 1is 2.

X 0.99 0.9999 1.0001 1.01
x3-1
o 1.492513| 1.499925| 1.500075| 1.507512

The limitasx — 1is 3.
oxt—1 n
e For generaln andn, we have lim = —.
x—>1 xM —1 m

X 0.99 0.9999 1.0001 1.01
-1
% 0.336689| 0.333367| 0.333300| 0.330022
The limitasx — 1is 3.
X 0.99 | 0.9999| 1.0001| 1.01
x3-1
1 2.9701 | 2.9997 | 3.0003| 3.0301
X —
The limitasx — 1is 3.
X 0.99 0.9999 1.0001 1.01
3
—1
;C7 1 0.437200| 0.428657 | 0.428486| 0.420058

The limitasx — 1is3 ~ 0.428571.

68. Find by numerical experimentation the positive intedessich thatxﬂ)rg%]?zx) exists.
SOLUTION
e Fork =1, we havexirgf(x) = Xlii)n0 m =0
x | —0.01 | —0.0001 | 0.0001| 0.01

f(x) | —0.01 | —0.0001 | 0.0001| 0.01

sin(sin?
e Fork =2, we have lim f(x) = lim sz) =1
x—0 x—=0

X —0.01 —0.0001 0.0001 0.01
f(x) | 0.999967| 1.000000| 1.000000| 0.999967

e For k = 3, the limit does not exist.

x | —0.01 | —0.0001 | 0.0001| 0.01
f(x) | —10% —10* 104 102

Indeed, asx — 0—, f(x) =

w — —oo, Whereas as — 0+, f(x) =

sin(sin? x)
x3 -
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sin(sin?
e Fork = 4, we have lim f(x) = lim (74)0 =0
x—0 x—0 X

x —0.01 | —0.0001 | 0.0001 | 0.01

f(x) | 10* 108 108 10*
e Fork = 5, the limit does not exist.

x —0.01 | —0.0001 | 0.0001 | 0.01

f(x) | =106 | —1012 1012 | 100

sin(sin? x) sin(sin? x)
- —— > 0

Indeed, asx — 0—, f(x) = — —o0, Whereas as — 0+, f(x) =

sin(sin?
e Fork = 6, we have lim f(x) = lim (76)0 =
x—0 x—0 X

x | —0.01 | —0.0001 | 0.0001| 0.01
f(x) | 108 1016 10t | 108

¢ SUMMARY

— Fork = 1, the limitis O.

— Fork = 2, the limitis 1.

— For oddk > 2, the limit does not exist.
— For evenk > 2, the limit isco.

x —
69. ) Plot the graph off (x) = 2 38_
X —
(&) Zoom in on the graph to estimafe= Iim3 f(x).
X—>

(b) Explain why
£(2.99999) < L < £(3.00001)

Use this to determiné to three decimal places.

SOLUTION

@

5.565;
5.5551 2%-8
5.54

5.535¢

5.5251

x=3

(b) Itis clear that the graph of rises as we move to the right. Mathematically, we may express this observation as: whenever
u <v, f(u) < f(v). Because

2.99999 <3 = lim f(x) < 3.00001,
x—3
it follows that
£(2.99999) < L = |im3 f(x) < f(3.00001).
xX—>

With £(2.99999) &~ 5.54516 and f(3.00001) = 5.545195, the above inequality becomés54516 < L < 5.545195; hence, to
three decimal placed, = 5.545.

i e A
70. The functionf(x) PRV

(a) Investigate lim f(x)and lim f(x) numerically.
x—>0+ x—>0—

21/x _2—1/x
is defined forx # 0.

(b) Plot the graph off and describe its behavior near= 0.
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SOLUTION

@

X —0.3 —0.2 —0.1 0.1 0.2 0.3
f(x) | —0.980506 | —0.998049 | —0.999998 | 0.999998 | 0.998049| 0.980506

(b) Asx — 0—, f(x) — —1, whereas as — 0+, f(x) — 1.

0.5

-1 -05 0.5 1
-0.5+
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2.3 Basic Limit Laws

Preliminary Questions
1. State the Sum Law and Quotient Law.

SOLUTION  Suppose lim—. f(x) and limy_. g(x) both exist. The Sum Law states that
Iim (f(x) +g(x)) = lim f(x) + lim g(x).
Provided lim;—¢ g(x) # 0, the Quotient Law states that
lim fx)limye f(x)

x=e g(x)  limyseg(x)’
2. Which of the following is a verbal version of the Product Law (assuming the limits exist)?
(@) The product of two functions has a limit.
(b) The limit of the product is the product of the limits.
(c) The product of a limit is a product of functions.
(d) A limit produces a product of functions.

SOLUTION The verbal version of the Product Law(is): The limit of the product is the product of the limits.

3. Which statement is correct? The Quotient Law does not hold if:
(a) The limit of the denominator is zero.
(b) The limit of the numerator is zero.

SOLUTION Statementa) is correct. The Quotient Law does not hold if the limit of the denominator is zero.

Exercises
In Exercises 1-24, evaluate the limit using the Basic Limit Laws and the !!'rl)ﬁgsﬂ/q = cPla andeiLnC k=k.
1. lim x
x—9

SOLUTION |im x = 9.
x—>9

2. lim 14

x—>—3
SOLUTION lim 14 = 14.
x——3

3. lim x*

1
x—>%

4
SOLUTION  lim x* = (—) = —.

1
x—>3
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4. lim z2/3

z—27
SOLUTION  lim z2/3 =272/3 — 9,
z—>27
5. lim ¢!
t—2
. _1 _1 1
SOLUTION |lim ¢ =27" = —.
t—2 2
2

6. lim x™
x—>5

. _ _ 1
SOLUTION lim x 2 =52=_—.
x—5 25

7. lim (3x +4)
x—>0.2
SOLUTION Using the Sum Law and the Constant Multiple Law:
im Bx+4)= lim 3x+ lim 4
x—0.2 x—0.2 x—0.2

=3 lim x4 lim 4=3(0.2)+4=4.6.
x—0.2

x—0.2

8. lim (3x3 +2x?)

x—>3
SOLUTION Using the Sum Law, the Constant Multiple Law and the Powers Law:
lim (3x3 4+ 2x2) = lim 3x3 + lim 2x?
x—>1 x—>3 x—>1

=3 lim x3+2 lim x2

x—>% x—>%
=3 ! 3+2 N _1
T U\3 3) 3

SOLUTION Using the Sum Law, the Constant Multiple Law and the Powers Law:

9. lim (3x* —2x3 + 4x)
x—>—1

lim (3x*—2x3 +4x) = lim 3x*— lim 2x3+ lim 4x

x——1 x—>—1 x—>—1 x—>—1

=3 lim x*=2 lim x3+4 lim x
x—>—1 x—>—1 x—>—1

=3(-D*=2(-1)3 +4(-1)=3+2—-4=1.
10. lim 3x2/3 —16x71)
x—>8

SOLUTION Using the Sum Law, the Constant Multiple Law and the Powers Law:

lim 3x2/3 — 16x~1) = lim 3x2/3 — lim 16x7!
x—8 x—8 x—8

=3 lim x2/3 — 16 lim x7!
x—8 x—8

=38)23 —16(8)"! =3(4) -2 = 10.
11. Iim2(x +1)(3x2-09)

SOLUTION Using the Product Law, the Sum Law and the Constant Multiple Law:
lim (x + 1) (3x2—9) - (Iim X+ lim 1) (Iim 3x2 — lim 9)
x—>2 x—2 x—2 x—2 x—2
= (z+1)(3 lim x2—9)
x—>2
=332)>-9 =9

12. lim (4x + 1)(6x — 1)

x—>%
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SOLUTION  Using the Product Law, the Sum Law and the Constant Multiple Law:
lim (4x +1D(6x—1) = ( lim (4x + 1)) ( lim (6x — 1))
x—>1/2 x—>1/2 x—>1/2

lim 4x 4+ Iim 1)( lim 6x— lim 1)
x—>1/2 x—>1/2 x—>1/2 x—>1/2

( lim x4+ lim 1) (6 Iim x— lim 1)
x—>1/2 x—>1/2 x—>1/2 x—>1/2

1 1
43+ )(6-5—1):3(2):6.

SOLUTION  Using the Quotient Law, the Sum Law and the Constant Multiple Law:

3t—14
13. lim
t—4 t+1

314 Jm G-y 3limi—limis 54w 2
t—>4 t+1  lim@+1) ~ lime¢+liml ~ 4+1 5
t—4 t—4 t—4
14, tim Y=
z—9z—2
SOLUTION  Using the Quotient Law, the Powers Law and the Sum Law:
lim lim
lim «/E — z—>9f z—>9f E
z—>9z—2 I|m(z—2) I|m z—Ilim2 7
z—9 —9 z—9

15. lim (16y + HEyY? +1)

y_)4

SOLUTION Using the Product Law, the Sum Law, the Constant Multiple Law and the Powers Law:

lim (16y + DEyY2+1) = ( lim (16y + 1)) ( lim @y'? + 1))

y_)4 y_)4 y_)4
= (16 lim y 4+ lim 1) (2 lim y'/2 4+ lim 1)
y—>1 y—>1 y—>1 y—>1

(o)) ) )

SOLUTION Using the Product Law and Sum Law:

16. lim x(x + 1)(x +2)
x—>2

)!il_1)12x(x +Dx+2) = ()!sz) ()!il_?z(x + 1)) (}!il_?z(x + 2))

—2(Iim x4+ lim 1) (Iim x + lim 2)
x—>2 x—2 x—2 x—2
=22+ 1)(2+2) =24

17. Iim ——
y—>4 «/6y +1

SOLUTION Using the Quotient Law, the Powers Law, the Sum Law and the Constant Multiple Law:

1 1 1
lim = — = -
y—4 /6y + 1 lim /6y +1 \/6 lim y+1
y—4 y—>4

_ 1 1

Ve +1 5
o NJw+24+1
18. lim ="

w—=>7 Jw—-3-—1

105
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SOLUTION  Using the Quotient Law, the Sum Law and the Powers Law:

N R GG S
w7 Jw—3-—1 im (vVw—-3-1)
w—7

[T (w+2) + 1
- [lim =31
IR RS
-t -

19. lim —————
x——1x3 + 4x

SOLUTION Using the Quotient Law, the Sum Law, the Powers Law and the Constant Multiple Law:
. X Jm ~1 1
lim = — - = =—.
x——1x3 + 4x lim x3 44 |Im1x (=3 +4(-1) 5
xX—>—

x—>—1

. 2 +1
im ————————
t——1 (3 4+2)t* + 1)
SOLUTION Using the Quotient Law, the Product Law, the Sum Law and the Powers Law:

20.

lim 2+ lim 1

: 12 + 1 x—>—1 x—>—1
LU v i
o (Ilm 3+ lim 2)( lim 4+ lim 1)
x—>—1 x—>—1 x—>—1 x—>—1
(-D2+1 2

1.

P EED OO
31t

. lim
1—25 (¢t —20)2

SOLUTION Using the Quotient Law, the Sum Law, the Constant Multiple Law and the Powers Law:

3 [1Tm -1 lim ¢
3Wi—4t  TyVisas T 3isast 35)-1025) 2

21

lim =
t—25 (t — 20)2 (

2 52 5
lim t—zo)
t—>25
22. lim (18y% — 4)*
y—>1

SOLUTION Using the Powers Law, the Sum Law and the Constant Multiple Law:

4
lim (18y% —4)* = (18 lim y2—4) =@2-4*=16.
y—>1 y—>1
23. lim (412 + 81 —5)3/2
t—>%

SOLUTION Using the Powers Law, the Sum Law and the Constant Multiple Law:

3/2
lim (462 4+ 8 =532 = (41lm 2 +81limr—5] =©O+12-5)32=¢4.
t—3 t—3 t—3
1/2
!
. lim 7( +2)
17 (¢t + 1)2/3

SOLUTION Using the Quotient Law, the Powers Law and the Sum Law:

1/2
i (22 ()1“7”2) oz 3

=7 (1 + 1)2/3 2/3 7 g2/3 T 4’
(Iim t+ 1)
t—>7
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25. Use the Quotient Law to prove thatxif_>lciryr(x) exists and is nonzero, then
lim L _ !
xe f(x)  lim f(x)

SOLUTION Since im f(x) is nonzero, we can apply the Quotient Law:
p c

1):((4@61) _ 1

li = — .
xe (f(x) lim 700) /00

26. Assuming that lim f(x) = 4, compute:
x—>6

(@ lim f (x)? (b) lim

1 .
lm < © lim x/7x)

SOLUTION
(a) Using the Powers Law:

2
lim f(x)? = (Iim f(x)) =42 = 16.
xX—6 x—6
(b) Since Iirr61 f(x) # 0, we may apply the Quotient Law:
x—>

P B B
6 T im 70 @

(c) Using the Product Law and Powers Law:

1/2
lim /7 (x) = (Iim6x) (Iim6 f(x)) =642 =12.

In Exercises 27-30, evaluate the limit assuming tHeh  f(x) =3 and lim g(x) = 1.
x—>—4 x—>—4
27. lim  f(x)g(x)
x—>—4
SOLUTION  lim f(x)g(x) = Ilim f(x) lim g(x)=3-1=3.
x—>—4 x—>—4 x—>—4

28. lim 4(2f(x) +3g(x))

SOLUTION
lim 2f(x)+3g(x))=2 lim f(x)+3 lim g(x)
x—>—4 x—>—4 x—>—4
=2-343.-1=6+3=09.
29. lim &;C)
x—>—4 X
SOLUTION  Since Iim4 x2 # 0, we may apply the Quotient Law, then applying the Powers Law:
xX——
lim
lim ix) _ x—>—4g(x) _ 1 _ i
x—>—4 x2 lim x2 ) 2 16
x—>—4 ( lim x)
x—>—4
1
x—>—43g(x)—9
SOLUTION
f+1 Mm@+ dim sy

x—>-43g(x)—9 3 lim gx)— lim 9 3.1-9 -6 3
x—>—4 x—>—4

. . sinx .
31. Can the Quotient Law be applied to evaluateollm—? Explain.
x—> X

107
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o . . . sinx . L i,
SOLUTION  The limit Quotient Lawcannotbe applied to evaluate Ibm— since |II‘T})x = 0. This violates a condition of the
X—> X X—>
Quotient Law. Accordingly, the ruleannotbe employed.

32. Show that the Product Law cannot be used to evaluate the Iimit/ (im— 5) tanx.
x—>m/2

SOLUTION The limit Product Lawcannotbe applied to evaluate Ii/m(x — /2) tanx since Iin} tanx does not exist (for
x—m/2 x—>m/2
example, ax — 7/2—, tanx — 00). This violates a hypothesis of the Product Law. Accordingly, the calenotbe employed.

33. Give an example where lirof (x) + g(x)) exists but neither limf(x) nor lim g(x) exists.
x—0 x—0 x—0

SOLUTION Let f(x) = 1/x andg(x) = —1/x. Then lim (f(x) + g(x)) = lim 0 = 0 However, limf(x) = lim 1/x and
x—0 x—>0 x—0 x—0

lim g(x) = lim —1/x do not exist.

x—0 x—0

Further Insights and Challenges

34. Show that if bothxh)rpf(x)g(x) and x“—>nl g(x) exist andxﬂ)nc]g(x) # 0, then xll_r)rg f(x) exists.Hint: Write f(x) =
S(x)g(x)

g(x)
SOLUTION  Given thatx|_l)n;1 f(x)g(x)=1L andxll_)rrl g(x) = M # 0 both exist, observe that

im 700 = fim g _ ARS8
x—c x—>c  g(x) lim g(x) M
xX—>C
aso exists.
35. Suppose that limg(z) = 12. Show that limg(z) exists and equak
t—3 t—3
SOLUTION We are given that Iigng(t) = 12. Since Iin;t = 3 # 0, we may apply the Quotient Law:
t— t—
limtg(t)
. . tg(t 12
lim g(r) = lim ) >3 12,
t—3 t—>3 t lim ¢ 3
t—3

36. Prove that |f Ilmh(’) = 5,then limh(r) = 15.
—3 t—3

()

SOLUTION Given that I|m = 5, observe that Iir3n = 3. Now use the Product Law:
t—

I|m h(t) = I|m t —= () (Iim t) (Iim ﬂ) =3.5=15.
t—3 t—3

37. & Assuming that Iirgl@ = 1, which of the following statements is necessarily true? Why?
xX—>

(@ f(0)=0 (b) lim f(x)=0
x—0

SOLUTION

0
(a) Given that I|m f( ) _ = 1, itis not necessarily true thaf(0) = 0. A counterexample is provided bf(x) = )SC x 7 0

, X =
(b) Given that |II‘2 f( ) = 1, itis necessarily true that Ilnf(x) = 0. For note that Ilr(hx = 0, whence
X—>
lim f(x) = lim x ZAC (Iim x) (Iim f(x)) =0-1=0.
X x—0 x—>0 X

38. Prove that |fx|_|>n2 fx)=L#0 andxll_hg g(x) =0, then the I|m|txl_|>ng 263 does not exist.
f(x)

SOLUTION Suppose that lim—— exists. Then
x—>c g(x)

f() IImg()limf(x):O Ilmf() 0.

( ) x—c x—>c g(x) x—c g(x)

L= Jim f(x)= lim g(x)-

. . .. J(X .
But, we were given thak # 0, so we have arrived at a contradiction. Thug, I»%% does not exist.
x—>c g(x
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39. & Suppose that limg(h) = L.
h—0
(a) Explain Whyhlim g(ah) = L for any constan # 0.
—0
(b) If we assume instead thgt lim(h) = L, is it still necessarily true the;lt ling(ah) = L?
—1 —1
(c) lllustrate (a) and (b) with the functiofi(x) = x2.
SOLUTION
(@) Ash — 0,ah — 0 as well; hence, if we make the change of variable= ah, then
lim g(ah) = lim g(w) = L.
h—0 w—0
(b) No. Ash — 1, ah — a, so we should not expect ling(ah) = lim g(h).
h—1 h—1
(c) Letg(x) = x2. Then
lim g(h) =0 and lim g(ah) = lim (ah)? = 0.
h—0 h—0 h—0
On the other hand,
lim g(h) =1 while lim g(ah) = lim (ah)?® = a2,
h—1 h—1 h—1

which is equal to the previous limit if and onlydf= +1.
X

exists for alla > 0. Assume also that lima* = 1.

x—0

(a) Prove thatlL(ab) = L(a) + L(b) fora,b > 0. Hint: (ab)* — 1 = a*(b* — 1) + (a* — 1). This shows thaL (a) “behaves”
like a logarithm. We will see that (a) = Ina in Section 3.10.

(b) Verify numerically thatZ(12) = L(3) + L(4).

40. Assume that.(a) = lim a
x—>0

SOLUTION
(@) Leta,b > 0. Then

. b)* —1 . *(b* -1 X -1
L(ab) = lim @) -1 _ lim & ( )+ )
x—0 X x—0 X
. . X —1 . *—1
= lim a* - lim + lim a
x—0 x—0 X x—0 X

1- L)+ L(a) = L(a) + L(b).
(b) From the table below, we estimate that, to three decimal plda@3$,= 1.099, L(4) = 1.386 and L (12) = 2.485. Thus,

L(12) = 2.485 = 1.099 + 1.386 = L(3) + L(4).

X —0.01 —0.001 —0.0001 0.0001 0.001 0.01

3B*-1)/x 1.092600| 1.098009| 1.098552| 1.098673| 1.099216| 1.104669
4* -1)/x 1.376730| 1.385334| 1.386198| 1.386390| 1.387256| 1.395948
(12¥ —1)/x | 2.454287| 2.481822| 2.484600| 2.485215| 2.488000| 2.516038

2.4 Limits and Continuity

Preliminary Questions

1. Which property off(x) = x3 allows us to conclude that Ii2nx3 =8?
x—

SOLUTION We can conclude that ligns» x3 = 8 because the functian® is continuous ak = 2.

2. What can be said about(3) if f is continuous and Iignf(x) = %?
x—

SoLUTION  If fis continuous and lig,3 f(x) = 1, then f(3) = 1.
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3. Suppose thaf'(x) < 0 if x is positive andf (x) > 1 if x is negative. Cary' be continuous at = 0?

SOLUTION Since f(x) < 0 whenx s positive andf'(x) > 1 whenx is negative, it follows that
lim <0 and lim > 1.
I, @ = Sz

Thus, lim,_,¢ f(x) does not exist, sbcannot be continuous at= 0.
4. Is it possible to determing'(7) if f(x) =3 forall x < 7 and f is right-continuous at = 7? What if f is left-continuous?

SOLUTION No. To determinef(7), we need to combine either knowledge of the valueg @f) for x < 7 with left-continuity or
knowledge of the values of (x) for x > 7 with right-continuity.

5. Are the following true or false? If false, state a correct version.

(@) f(x)is continuous at = « if the left- and right-hand limits off (x) asx — a exist and are equal.

(b) f(x)is continuous akt = « if the left- and right-hand limits off (x) asx — a exist and equaf ().

(c) Ifthe left- and right-hand limits off (x) asx — a exist, thenf has a removable discontinuity at= a.

(d) If f(x)andg(x) are continuous at = «, then f(x) + g(x) is continuous at = a.

(e) If f(x)andg(x) are continuous at = a, then f(x)/g(x) is continuous at = a.

SOLUTION

(a) False. The correct statement i§(x) is continuous ak = a if the left- and right-hand limits off (x) asx — a exist and equal
fla)”

(b) True.

(c) False. The correct statement is “If the left- and right-hand limitg ©f) asx — a are equal but not equal tf(a), thenf has a
removable discontinuity at = a.”

(d) True.

(e) False. The correct statement is “fi{x) andg(x) are continuous at = a andg(a) # 0, then f(x)/g(x) is continuous at
x=a’

Exercises

1. Referring to Figure 1, state whethg(x) is left- or right-continuous (or neither) at each point of discontinuity. Dfes) have
any removable discontinuities?

~ o
, | -

11 .

I 2 3 4 5 6
FIGURE 1 Graph ofy = f(x)
SOLUTION

e The functionf is discontinuous at = 1; it is right-continuous there.
e The functionf is discontinuous at = 3; it is neither left-continuous nor right-continuous there.
e The functionf is discontinuous at = 5; it is left-continuous there.

However, these discontinuities are not removable.

Exercises 2—4 refer to the functigrix) in Figure 2.

U5 3 45 6
FIGURE 2 Graph ofy = g(x)
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2. State whetheg (x) is left- or right-continuous (or neither) at each of its points of discontinuity.

SOLUTION

e The functiong is discontinuous at = 1; it is left-continuous there.
e The functiong is discontinuous at = 3; it is neither left-continuous nor right-continuous there.
e The functiong is discontinuous at = 5; it is right-continuous there.

3. At which pointc doesg(x) have a removable discontinuity? How shogl@) be redefined to makg continuous ak = ¢?

SOLUTION Because lim—3 g(x) exists, the functiorz has a removable discontinuity at= 3. Assigningg(3) = 4 makesg
continuous at = 3.

4. Find the pointc; at which g(x) has a jump discontinuity but is left-continuous. How shoglld;) be redefined to make
right-continuous at = ¢ ?
SOLUTION The functiong has a jump discontinuity at = 1, but is left-continuous there. Assigniggl) = 3 makesg right-
continuous ak = 1 (but no longer left-continuous).

5. In Figure 3, determine the one-sided limits at the points of discontinuity. Which discontinuity is removable and howfshould
be redefined to make it continuous at this point?

FIGURE 3

SOLUTION  The functionf is discontinuous at = 0, at which Iir(p f(x) = 0o and Iir(;Lr f(x) = 2. The functionf is also
x—>0— xX—>
discontinuous at = 2, at which Iir;w f(x)=6and IianJr f(x) = 6. Because the two one-sided limits exist and are equal at
x—>2— x—
x = 2, the discontinuity ak = 2 is removable. Assigning'(2) = 6 makesf continuous ak = 2.
6. Suppose thaf'(x) = 2 forx < 3 and f(x) = —4for x > 3.
(@) Whatis f(3) if f is left-continuous ak = 3?
(b) Whatis f(3) if f isright-continuous at = 3?
SOLUTION  f(x) =2for x <3 and f(x) = —4 for x > 3.
e If f isleft-continuous akt = 3, then f(3) = limy_3— f(x) = 2.
e If f isright-continuous at = 3, then f(3) = limx—o+ f(x) = —4.

In Exercises 7-16, use the Laws of Continuity and Theorems 2 and 3 to show that the function is continuous.
7. f(x) =x +sinx
SOLUTION  Sincex and sinx are continuous, so is + sinx by Continuity Law (i).
8. f(x) = xsinx
SOLUTION  Sincex and sinx are continuous, so issinx by Continuity Law (jii).
9. f(x) =3x+4sinx
SOLUTION  Sincex and sinx are continuous, so afex and4 sinx by Continuity Law (ii). Thus3x + 4 sinx is continuous by
Continuity Law (i).
10. f(x) = 3x3 + 8x% — 20x
SOLUTION

« Sincex is continuous, so are® andx?2 by repeated applications of Continuity Law (jii).
 Hence3x3, 8x2, and—20x are continuous by Continuity Law (ii).
* Finally, 3x3 + 8x2 — 20x is continuous by Continuity Law (i).

1

A R S |
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SOLUTION

« Sincex is continuous, so is2 by Continuity Law (iii).
« Recall that constant functions, such as 1, are continuous. Fhys!1 is continuous.

e Finally, poanY is continuous by Continuity Law (iv) becausé + 1 is never 0.
X

x2 — cosx

12. =
Jx) 3 + cosx
SOLUTION

« Sincex is continuous, so is2 by Continuity Law (iii).
¢ Since cox is continuous, so is- cosx by Continuity Law (ii).
e Accordingly,x2 — cosx is continuous by Continuity Law (i).
¢ Since 3 (a constant function) and coare continuous, so 3+ cosx by Continuity Law (i).
, x2 —cosx | ) o . .
¢ Finally, ———— is continuous by Continuity Law (iv) becau3et cosx is never 0.
3 + cosx
13. f(x) = cogx?)

SOLUTION  The function f(x) is a composite of two continuous functions: aoandx2, so f(x) is continuous by Theorem 5,
which states that a composite of continuous functions is continuous.

14, f(x) = tan 1 (4%)

SOLUTION  The functionf(x) is a composite of two continuous functions: Tanc and4*, so f(x) is continuous by Theorem 5,
which states that a composite of continuous functions is continuous.

15. f(x) = e* cos3x

SOLUTION ¢* and cos3x are continuous, se* cos3x is continuous by Continuity Law (iii).
16. f(x) = In(x*+1)

SOLUTION

« Sincex is continuous, so is* by repeated application of Continuity Law (jii).
« Since 1 (a constant function) and are continuous, so is* + 1 by Continuity Law (i).
« Finally, because* + 1 > 0 for all x and Inx is continuous for > 0, the composite function [@* + 1) is continuous.

In Exercises 17—-34, determine the points of discontinuity. State the type of discontinuity (removable, jump, infinite, or none of these)
and whether the function is left- or right-continuous.

17, () =~

SOLUTION The functionl/x is discontinuous at = 0, at which there is an infinite discontinuity. The function is neither left-
nor right-continuous at = 0.

18. f(x) = x|
SOLUTION The functionf(x) = |x| is continuous everywhere.
-2

19. f(x) = ——=

|x — 1]
SOLUTION The function |x 1 is discontinuous at = 1, at which there is an infinite discontinuity. The function is neither

x —

left- nor right-continuous at = 1.

20. f(x) = [x]
SOLUTION  This function has a jump discontinuity at= n for every integen. It is continuous at all other values of For every
integern,

im [x]=n
x—>n+

since[x] = n for all x betweerm andn + 1. This shows thafx] is right-continuousat x = n. On the other hand,

M b=

since[x] = n — 1 for all x betweem — 1 andn. Thus|[x] is not left-continuous.
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1
21. ==
1@ =[]
SOLUTION The function[%x] is discontinuous at even integers, at which there are jump discontinuities. Because
lim —x|=n
x—>2n+ | 2
but
. 1
lim -x|=n-1,
x—2n—|2

it follows that this function is right-continuous at the even integers but not left-continuous.

1

22. g(1) = 2.1

. 1 1 L . . e
SOLUTION The function f(z) = " is discontinuous at = —1 ands = 1, at which there are infinite

1 U-De+ 1)
discontinuities. The function is neither left- nor right- continuous at either point of discontinuity.
x+1

23 J) =13

x+1 1

SOLUTION  The function f(x) = 3 is discontinuous at = 7, at which there is an infinite discontinuity. The function is

4x —
neither left- nor right-continuous at= %

1-2z

1-2z 1-2z

2.6 (z+2)(z—3)
discontinuities. The function is neither left- nor right- continuous at either point of discontinuity.

25. f(x) = 3x2/3 —9x3
SOLUTION The functionf(x) = 3x2/3 — 9x3 is defined and continuous for all
26. g(r) = 372/3 — 943

SOLUTION The functiong(¢) = 3172/3 — 943 is discontinuous at = 0, at which there is an infinite discontinuity. The function
is neither left- nor right-continuous at= 0.

SOLUTION  The functionf(z) = is discontinuous at = —2 andz = 3, at which there are infinite
z

x—=2
— X #2
27. f(x) =4 [x =2
—1 x=2
x—2 (x—=2) . . . L
SOLUTION Forx > 2, f(x) = ﬁ = 1.Forx <2, f(x) = T = —1. The function has a jump discontinuity.at= 2.
X — — X
Because
lim f(x)=-1=f(2)
xX—>2—
but

lim =1 2),
Jim ) =14 /@)
it follows that this function is left-continuous at= 2 but not right-continuous.

1
28. f(x) = cos; x#0

x=0

SOLUTION The function co{%) is discontinuous at = 0, at which there is an oscillatory discontinuity. Because neither
lim Xx) hor lim X
x—>0— f( ) x—>0+ f( )

exist, the function is neither left- nor right-continuousvat 0.
29. g(r) = tan2t¢

i sin2t . . :
SOLUTION The functiong(¢) = tan2t = o is discontinuous whenever cds = 0; i.e., whenever

2
:(n—f—l)rr or t:(2n+1)n7
2 4
wheren is an integer. At every such value othere is an infinite discontinuity. The function is neither left- nor right-continuous at
any of these points of discontinuity.

2t
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30. f(x) = csqx?)

SOLUTION The function f(x) = csqx?) = is discontinuous whenever gi?) = 0; i.e., whenever? = nx or

1
sin(x2)
x = +.4/nm, wheren is a positive integer. At every such valueothere is an infinite discontinuity. The function is neither left-
nor right-continuous at any of these points of discontinuity.

31. f(x) = tan(sinx)
SOLUTION The function f(x) = tan(sinx) is continuous everywhere. Reason: siis continuous everywhere and tars

;:ontipuous or(—%, %)—and in particular on-1 < u = sinx < 1. Continuity of tarisinx) follows by the continuity of composite
unctions.

32. f(x) = cogx[x])

SOLUTION The function f(x) = cogx[x]) has a jump discontinuity at = » for every integem. The function is right-
continuous but not left-continuous at each of these points of discontinuity.

1
BIW ==

SOLUTION  The functionf(x) = ——— IS discontinuous at = 0, at which there is an infinite discontinuity. The function is
er —e
neither left- nor right-continuous at= 0.

34. f(x) =In|x — 4|

SOLUTION The functionf(x) = In|x — 4| is discontinuous at = 4, at which there is an infinite discontinuity. The function is
neither left- nor right-continuous at= 4.

In Exercises 35-48, determine the domain of the function and prove that it is continuous on its domain using the Laws of Continuity
and the facts quoted in this section.

35. f(x) = 2sinx + 3 cosx

SOLUTION The domain of sinx + 3 cosx is all real numbers. Both sinand cosc are continuous on this domain, 3sinx +
3 cosx is continuous by Continuity Laws (i) and (ii).

36. f(x) = vx2+9

SOLUTION  The domain ofy/x2 + 9is all real numbers, as® 4+ 9 > 0 for all x. Since,/x and the polynomiak? + 9 are both
continuous, so is the composite functiefx2 + 9.

37. f(x) = /xsinx

SoLUTION This function is defined as long as> 0. Since/x and sinx are continuous, so ig/x sin x by Continuity Law (iii).

)
B I0 =

SOLUTION This function is defined as long as> 0 andx + x1/4 # 0, and so the domain is all > 0. Sincex is continuous,
so arex? andx + x1/4 by Continuity Laws (iii) and (i); hence, by Continuity Law (iv), sois%.

39. f(x) = x2/32%
SOLUTION The domain ofc2/32% is all real numbers as the denominator of the rational exponent is odd.B6trand2* are
continuous on this domain, s@/32* is continuous by Continuity Law (iii).

40. f(x) = x'/3 4 x3/4

SOLUTION The domain ofx!/3 + x3/4is x > 0. On this domain, both!/3 and x3/4 are continuous, sa!/3 + x3/4 is
continuous by Continuity Law (i).

41. f(x) =x"*3

SOLUTION This function is defined for alt # 0. Because the function*/3 is continuous and not equal to zero for 0, it
follows that

is continuous forr # 0 by Continuity Law (iv).
42. f(x) =In©9—x?)

SOLUTION The domain of Ii9 — x2) is all x such tha® — x2 > 0, or |x| < 3. The polynomial — x2 is continuous for all real
numbers and In is continuous forx > 0; therefore, the composite function(th— x2) is continuous fotx| < 3.
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43. f(x) =tar? x

SOLUTION The domain of tafix is all x # +(2n — 1)7/2 wheren is a positive integer. Because taris continuous on this
domain, it follows from Continuity Law (iii) that tahx is also continuous on this domain.

44. f(x) = coq2¥)

SOLUTION The domain of co@”) is all real numbers. Because the functions. x@sd2* are continuous on this domain, so is
the composite function c¢z").

45. f(x) = (x* +1)°/?
SOLUTION The domain ofx* + 1)3/2 is all real numbers as* + 1 > 0 for all x. Becauser3/2 and the polynomiak* + 1 are
both continuous, so is the composite functiaff + 1)3/2.
46, f(x) =e*
SOLUTION The domain 06—*" is all real numbers. Becaugé and the polynomial-x? are both continuous for all real numbers,
S0 is the composite functiarm>°.

2
co
47. ey = S5

x<—1

SOLUTION  The domain for this function is alk # +1. Because the functions cosand x2 are continuous on this domain, so
is the composite function c@s?). Finally, because the polynomiaP — 1 is continuous and not equal to zero for# =1, the
cogx2)
x2 -1
48. f(x) = 9@
SOLUTION The domain ob®@"¥ is all x # +(2n — 1)7/2 wheren is a positive integer. Because tamnd9* are continuous on
this domain, it follows that the composite functigid"* is also continuous on this domain.

49. Show that the function

function

is continuous by Continuity Law (iv).

x243 forx<l1
f(x)=310—x forl<x<2
6x —x2 forx>2

is continuous forx # 1, 2. Then compute the right- and left-hand limitswa& 1, 2, and determine whethef(x) is left-continuous,
right-continuous, or continuous at these points (Figure 4).

y=10-x

9+

>

y=x+3

FIGURE 4

SOLUTION Let’s start withx # 1,2.

 Becauser is continuous, so is2 by Continuity Law (iii). The constant function 3 is also continuousx3et+ 3 is continuous
by Continuity Law (i). Thereforef(x) is continuous for < 1.

e Becausex and the constant function 10 are continuous, the fundtibs x is continuous by Continuity Law (i). Therefore,
f(x) is continuous fol < x < 2.

* Becausex is continuousx? is continuous by Continuity Law (iii) andx is continuous by Continuity Law (ii). Therefore,
6x — x2 is continuous by Continuity Law (i), s§(x) is continuous for: > 2.

At x = 1, f(x) has a jump discontinuity because the one-sided limits exist but are not equal:
lim = lim (x? 4+3) =4, lim = lim (10—x)=09.
x—>1— S ) x—)l—(x +3) x—>1+ /() x—>1+( *)
Furthermore, the right-hand limit equals the function vafi(@) = 9, so f(x) is right-continuous at = 1. At x = 2,
lim = lim (10—x) =38, lim = lim (6x —x?) =8.
xXx—>2— f(x) x—>2—( x) x—>2+ f(X) x—>2+( v )

The left- and right-hand limits exist and are equalft@), so f(x) is continuous at = 2.
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50. Sawtooth Function Draw the graph off(x) = x — [x]. At which points isf discontinuous? Is it left- or right-continuous at
those points?

SOLUTION Two views of the sawtooth functioff(x) = x — [x] appear below. The first is the actual graph. In the second, the
jumps are “connected” so as to better illustrate its “sawtooth” nature. The function is right-continuous at integer values of

LN A

3 2 -1 23 =2-1 | 1 2 3

In Exercises 51-54, sketch the graphfdfr). At each point of discontinuity, state whethgiis left- or right-continuous.

2

X forx <1

51. = -
/() 2—x forx>1

SOLUTION

The function f is continuous everywhere.
x+1 forx <1

2= forx > 1
- x>
X

SOLUTION

The functionyf is right-continuous at = 1.

2
x“—=3x+2
_ 2
53. f) =1 w—2 7
0 x=2

SOLUTION

5
4
3
2
1
+ * + +— X
-2 ‘IJf N 4 6
The functionf is neither left- nor right-continuous at= 2.
X341 for—-co<x <0
54. f(x) =4—x+1 foro<x <2

—x24+10x—15 forx>2
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SOLUTION

The functionf is right-continuous at = 2.

55. Show that the function

2

x“—16

- 4
fo=1">%"g *7

10 x =4

has a removable discontinuity at= 4.

SOLUTION To show thatf(x) has a removable discontinuity at= 4, we must establish that
lim f(x)
x—>4

exists but does not equgi(4). Now,

Xz—

6

I = li 4)=8+#10= f(4);

Jim ——=lm+4)=8% ACOK

thus, f(x) has a removable discontinuity at= 4. To remove the discontinuity, we must redefifigl) = 8.

56. (GU| Define f(x) = xsind 4 2 forx # 0. Plot f(x). How shouldf(0) be defined so thaf is continuous at = 0?

SOLUTION

y

3.0t
W
1.5+

1.0t
051

3 2 -1 12 3
From the graph, it appears thAt0) should be defined equal to 2 to makKecontinuous ak = 0.

In Exercises 57-59, find the value of the constanb( or ¢) that makes the function continuous.

x2—¢ forx<5

57. =
S ) 4x +2¢ forx>5

SOLUTION Asx — 5—,we havex?2 —¢ — 25— ¢
L= Ror25—c =20+ 2cimpliesc = 3.

L. Asx — 5+, we havedx + 2¢ — 20 + 2¢ = R. Match the limits:

2x +9x~1 forx <3
—4x + ¢ forx >3

58. f(x) =

SOLUTION Asx — 3—, we have2x + 9x~! — 9 = L. Asx — 3+, we have—4x + ¢ — ¢ — 12 = R. Match the limits:
L =Ror9=c—12impliesc = 21.

x~1 forx < —1
59. f(x) ={ax+b for —1<x<1
-1 1
X forx > 5
SOLUTION Asx — —1—, x~1 > —1whileasx - —1+,ax +b - b —a. For f to be continuous at = —1, we must

therefore havé —a = —1. Now, asx — 41—, ax + b — 1a + b while asx — J+, x~! — 2. For f to be continuous at = 1,
we must therefore havga + b = 2. Solving these two equations farandb yieldsa = 2 andb = 1.
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60. Define

x+3 forx <-—1
gx) = Jcx for —1<x<2
x+2 forx>2

Find a value ot such thatg(x) is
(a) left-continuous (b) right-continuous
In each case, sketch the grapheaf).

SOLUTION
(a) In order forg(x) to be left-continuous, we need
Iim gx)= Im (x+3)=2
x—>—1— x—>—1—
to be equal to
lim = i = —c.
x—>—1+ g(x) x—>—1+ o ¢

Therefore, we must have= —2. The graph of (x) with ¢ = —2 is shown below.

y

6 /
4
+ + + + + + + + X
,4(37271_21[\2 345

(b) In order forg(x) to be right-continuous, we need

lim = lim =2
x—>2—g(X) xX—>2— e ¢
to be equal to
lim x) = lim (x +2)=4.
x—>2+ g( ) x—>2+( )

Therefore, we must have= 2. The graph ofg(x) with ¢ = 2 is shown below.

i 1 ) . . .
61. Defineg(t) = tan! (ﬁ) fort # 1. Answer the following questions, using a plot if necessary.

(@) Cang(1) be defined so that(¢) is continuous at = 1?
(b) How shouldg (1) be defined so that(¢) is left-continuous at = 1?

SOLUTION

(a) From the graph of(t) shown below, we see thagthas a jump discontinuity at= 1; thereforeg(a) cannot be defined so that
g is continuous at = 1.

(b) To makeg left-continuous at = 1, we should define

— i S S W
SURNL R COES
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62. Each of the following statementsfiglse For each statement, sketch the graph of a function that provides a counterexample.
(@ If Iim f(x) exists, thenf(x) is continuous ak = a.
X a

(b) If f(x) has a jump discontinuity at = a, then f(«) is equal to either lim f(x) or lim f(x).
x—>a— x—>a+

SOLUTION Refer to the two figures shown below.

(a) The figure at the left shows a function for Whigtl)‘li_rﬁ(x) exists, but the function is not continuousxat= a because the
function is not defined at = a.

(b) The figure at the right shows a function that has a jump discontinuity-ata but f(«) is not equal to eithe;_)lirp f(x)or

lim  f(x).

x—a+

=

In Exercises 63—66, draw the graph of a function[@yb] with the given properties.

63. f(x)isnotcontinuous at = 1, but lim f(x)and lim f(x) existand are equal.
x—>1+ x—>1—

SOLUTION

N P S

64. f(x) is left-continuous but not continuous.at= 2 and right-continuous but not continuousxat 3.

SOLUTION

41
34
2 -—
-

65. f(x) has a removable discontinuity at= 1, a jump discontinuity at = 2, and

Jm =l f9 =2

SOLUTION

y
14+
31 e /
21
—_—T0—0
2\
+ + + X

1é\345

66. f(x) is right- but not left-continuous at = 1, left- but not right-continuous at = 2, and neither left- nor right-continuous at
x = 3.



120 CHAPTER 2 | LIMITS

SOLUTION

+m
|
|

In Exercises 67—-80, evaluate using substitution.
67. lim (2x3—4)
x—>—1
SOLUTION  lim (2x3 —4) =2(-1)3 — 4 = —e.
x—>—1
68. lim (5x — 12x72)
x—>2

SOLUTION  lim (5x — 12x72) =502) - 12272) = 10— 12(}) = 7.
x—>

2
69. lim —~ 1=
x—3 x2 4+ 2x

x+2 342 5 1

SOLUTION |im = = =
x—3 x2 4+ 2x 3242.3 15 3

70. lim sin(% — n)

Sy o
SOLUTION xlinn sin(z —m) = sin(-3) = —1.

71. Iimﬂ tan(3x)

x—Z

SOLUTION  lim tan(3x) = tan3- %) = tan(3F) = —1
x—>Z

T
i
72. lim
X—>m COSX
. 1 1 1
SOLUTION Iim —= — = — = —1
x—m cosx cosmt  —1
73. lim x7/2
x—>4

SOLUTION  lim x™5/2 = 475/2 = __
x—4 32
74. lim v/x3 + 4x
x—>2
SOLUTION Iim2 Va3 +4x = 4/23 +4Q2) = 4.
x—

75. lim (1 —8x3)3/2
x—>—1

SOLUTION  lim (1 —8x%)3/2 = (1-8(=1)%)*/2 = 27.
x—>—1

. 7 2\2/3
76. lim ( X )
x—=>2\ 4—x
(Tx+2\? 70) +2)\?/3
SOLUTION lim === _= = 4.
x—>2\ 4—x 4-2

77. lim 10%° 2%

x—>3

soLUTION  lim 10%° 2% = 103°~20) = 1000.

x—3

78. lim 3Sn¥

.
xX—> >
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. ; . 1
SOLUTION  lim 38N — 3sin(-7/2) — _
x—>—-Z 3

79. lim sin! (%)

x—4

. L1 X - . X 1 4 b
SOLUTION  lim sin (—) =sin lim — ) =sin ==
x—4 4 x—4 4 4 2
80. lim tan!(e%)
x—0
SOLUTION lim tar!(e*) = tan! (Iim ex) —tan ! =tan'1="
x—0 x—0 4
81. Suppose thaf'(x) andg(x) are discontinuous at = c¢. Does it follow thatf(x) + g(x) is discontinuous at = ¢? If not,

give a counterexample. Does this contradict Theorem 1 (i)?

SOLUTION Even if f(x) andg(x) are discontinuous at = c, it is not necessarily true that(x) + g(x) is discontinuous at

x = c. For example, supposg(x) = —x~! andg(x) = x~!. Both f(x) andg(x) are discontinuous at = 0; however, the
function f(x) + g(x) = 0, which is continuous everywhere, including= 0. This does not contradict Theorem 1 (i), which deals
only with continuous functions.

82. Prove thatf(x) = |x| is continuous for alk. Hint: To prove continuity at = 0, consider the one-sided limits.
SOLUTION Letc < 0. Then

lim |x| = Iim —x = —¢c = |c|.
xX—>C xX—>C
Next, letc > 0. Then

lim |x| = lim x =¢ =|c|.
X—>C xX—>C

Finally,
im |x|= lim —x=0,
x—>0— x—>0—
im |x|= lim x=0
x—0+ x—>0+

and we recall thaf0| = 0. Thus,|x| is continuous for alk.
83. Use the result of Exercise 82 to prove thag {f) is continuous, therf(x) = |g(x)| is also continuous.

SOLUTION Recall that the composition of two continuous functions is continuous. M@w) = |g(x)| is a composition of the
continuous functiong (x) and|x|, so is also continuous.

84. Which of the following quantities would be represented by continuous functions of time and which would have one or more
discontinuities?

(a) Velocity of an airplane during a flight

(b) Temperature in a room under ordinary conditions

(c) Value of a bank account with interest paid yearly

(d) The salary of a teacher

(e) The population of the world

SOLUTION
(@) The velocity of an airplane during a flight from Boston to Chicago is a continuous function of time.

(b) The temperature of a room under ordinary conditions is a continuous function of time.

(c) The value of a bank account with interest paid yearlyasa continuous function of time. It has discontinuities when deposits

or withdrawals are made and when interest is paid.

(d) The salary of a teacherimta continuous function of time. It has discontinuities whenever the teacher gets a raise (or whenever
his or her salary is lowered).

(e) The population of the world isota continuous function of time since it changes by a discrete amount with each birth or death.
Since it takes on such large numbers (many billions), it is often treated as a continuous function for the purposes of mathematic
modeling.

85. & In 2009, the federal income ta&X(x) on income ofx dollars (up to $82,250) was determined by the formula
0.10x for0 < x < 8350

T(x) = 40.15x —417.50  for 8350 < x < 33,950
0.25x —3812.50 for 33,950 < x < 82,250

Sketch the graph df (x). DoesT (x) have any discontinuities? Explain why,Tif(x) had a jump discontinuity, it might be advan-
tageous in some situations to edeasmoney.
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SOLUTION  T'(x), the amount of federal income tax owed on an income dbllars in 2009, might be a discontinuous function
depending upon how the tax tables are constructed (as determined by that year's regulations). Here is algrgpforothat
particular year.

y
15,000

10,000

5000

+ + t + X
20,000 40,000 60,000 80,000

If T(x) had a jump discontinuity (say at= c), it might be advantageous to earn slightly less income th@sayc — ¢) and be
taxed at a lower rate than to earor more and be taxed at a higher rate. Your net earnings may actually be more in the former case
than in the latter one.

Further Insights and Challenges

86. & If f(x) has aremovable discontinuityat= c, then itis possible to redefing(c) so thatf(x) is continuous at = c.
Can this be done in more than one way?

SOLUTION Inorder for f(x) to have a removable discontinuityat= c, xl@ﬂ f(x) = L must exist. To remove the discontinuity,
we definef(c) = L. Thenf is continuous at = ¢ sincexing f(x) = L = f(c). Nowassumehat we may defing'(c) = M #

L and still havef continuous atx = c. Thenx[r)rg f(x) = f(c) = M. ThereforeM = L, a contradiction. Roughly speaking,
there’s only one way to fill in the hole in the graph 6f

87. Give an example of functiong(x) andg(x) such thatf(g(x)) is continuous bug (x) has at least one discontinuity.

SOLUTION Answers may vary. The simplest examples are the functjfi@gx)) where f(x) = C is a constant function, and
g(x) is defined for allx. In these caseg,(g(x)) = C. For example, iff(x) = 3 andg(x) = [x], g is discontinuous at all integer
valuesx = n, but f(g(x)) = 3 is continuous.

88. Continuous at Only One Point Show that the following function is continuous only,at= 0:

X for x rational
—x for x irrational

fx) =

SOLUTION Let f(x) = x for x rational andf(x) = —x for x irrational.

e Now f(0) = 0 since O is rational. Moreover, as — 0, we have|f(x) — f(0)] = |f(x)—0] = |x| — 0. Thus
Iim0 f(x) = f(0)and f is continuous ak = 0.
xX—>

e Letc # 0 be any nonzero rational number. et , x5, ...} be a sequence of irrational points that appragdle., as: — oo,
the x, get arbitrarily close te. Notice that as: — oo, we have| f(x,) — f(¢)| = |—xn —c¢| = |xn +¢| = |2¢| # 0.
Therefore, it isnot true that im f(x) = f(c). Accordingly, f is not continuous atc = ¢. Sincec was arbitrary,f is

X c

discontinuous at all rational numbers.

e Letc # 0 be any nonzero irrational number. let;, x5, ...} be a sequence of rational points that appragéle., asn — oo,
the x,, get arbitrarily close te. Notice that as: — oo, we havel| f(x,) — f(c)| = |xn — (=¢)| = |xn +¢| = |2¢| # 0.
Therefore, it isnot true thatxirrcl f(x) = f(c). Accordingly, f is not continuous atc = c. Sincec was arbitrary,f is

discontinuous at all irrational numbers.
e CONCLUSION: f is continuous at = 0 and is discontinuous at all points# 0.

89. Show thatf(x) is a discontinuous function for atl where f(x) is defined as follows:

1 for x rational
—1 for x irrational

f(x) =

Show thatf(x)? is continuous for alk.

SOLUTION IiLn f(x) does not exist for any. If ¢ is irrational, then there is always a rational numbearbitrarily close toc
X—>C
so that| f(c) — f(r)| = 2. If, on the other hand; is rational, there is always drrational numberz arbitrarily close tac so that

If(0) = f(@)]=2.

On the other handf (x)? is a constant function that always has valyavhich is obviously continuous.
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2.5 Evaluating Limits Algebraically

Preliminary Questions
1. Which of the following is indeterminate at= 1?

x2—|—1 x2 -1 x2 -1 x2+1
x—1" x+2’ Jx+3-2 Jx+3-—

SOLUTION At x = 1, \/7 > is of the form ; hence, this function is indeterminate. None of the remaining functions is
+1 _x24+1

indeterminate at = and W) are undefined because the denominator is zero but the numerator is not—y@e

is equal to 0.

2. Give counterexamples to show that these statements are false:
(a) If f(c)isindeterminate, then the right- and left-hand limitstas> ¢ are not equal.
(b) If Iim f(x) exists, thenf(c) is not indeterminate.

X—>C

(c) If f(x)is undefined ak = c, then f(x) has an indeterminate form at= c.

SOLUTION
(@) Let f(x) = _1 .Atx = 1, f isindeterminate of the forr§ but
. x2 -1 . 2_1
lim = lim x+D)=2= Ilm (x+1)= lim
x—>1— x —1 x—1— x—1+ x—>1+ x—1°
(b) Again, let f(x) = _1 .Then

lim f(x) = lim ~ —limx+1)=2
x—>1 x—>1 — x—>1

but (1) is indeterminate of the forrﬁ.

(c) Let f(x) = % Then f is undefined at = 0 but does not have an indeterminate fornx at 0.

3. The method for evaluating limits discussed in this section is sometimes called “simplify and plug in.” Explain how it actually
relies on the property of continuity.

SOLUTION If f is continuous ak = c, then, by definition, lim—. f(x) = f(c); in other words, the limit of a continuous
function atx = c is the value of the function at = ¢. The “simplify and plug-in” strategy is based on simplifying a function
which is indeterminate to a continuous function. Once the simplification has been made, the limit of the remaining continuous
function is obtained by evaluation.

Exercises

In Exercises 1-4, show that the limit leads to an indeterminate form. Then carry out the two-step procedure: Transform the functiol
algebraically and evaluate using continuity.

2
. —36
1. lim &
xX—>6 X —

x _26 we obtain the indeterminate for. Upon factoring the numerator and

SOLUTION When we substitutee = 6 into
simplifying, we find

2
. - 36 . -6 6
lim = _ im 39646 lim (x +6) = 12,
x—=>6 XxX—06 x—6 X —
9 — h?
2. lim
h—>3 h—3
SOLUTION When we substituté = 3 into 2 “—5 » We obtain the indeterminate fOI’I%I Upon factoring the denominator and
simplifying, we find
9—n? 3—-n)(3+h
lim — tim )(+)_Im —G+h) =—

h—3 h—3 h—3 h-3
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. x24+2x+1
3 lim ———
x——1 x+1
SOLUTION When we substitute = —1 into xz%ﬁ“ we obtain the indeterminate forgh Upon factoring the numerator and
simplifying, we find
242x+1 1)2
fim R DT k=0
x——1 x+1 x—>—1 x+1 x——1
. 2t—18
4. lim
t—>9 5t — 45
SOLUTION When we substitute = 9 into 2=18  we obtain the indeterminate forh Upon dividing out the common factor of

t — 9 from both the numerator and denominator, we find

i 218 209
t—>95t—45  t>95(—9) 1—9

2 2
5 5

In Exercises 5-34, evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

5. lim —~— 1
x—7 x2—49
. . x—17 . 1 1
SOLUTION |im =lm —=lm — = —.
x>7x2—49 x>7(x-7N(x+7) x>7x+7 14
2
— 64
6. lim =
x—>8 X —
. x2—64 0
SOLUTION  lim =—=0
x—>8 x—9 -1
. X2 +3x+2
7. lm ——M—
x—>—2 X +2
2
. 3 2 . 1 2 .
SOLUTION  lim Al li G+ DE+2) = lim (x+1)=-1.
x—>—2 X +2 x—>—2 X +2 x—=>—2
3
. — 64
8. lim = —°*
x—8 x—28
3
. — 64 . -8 8 .
SOLUTION  lim AL lim 7)(()( )x +8) = lim x(x + 8) = 8(16) = 128.
x—>8 x—28 x—8 x—8 x—8
2x2-9x -5
9. lim 2 72
x—5 x2-=25
o o2x2—9x—-5  (x=5@x+1) . 2x+1 11
SOLUTION |im = = = —.
x5 x2-25 x—>5 (x =5)(x+5) x—>5 x+5 10
(A +hm3-1
h—0 h
SOLUTION
o Q4+m3-1 . 143n+32+K3—1 . 3h+3n2 403
im ———~——— = lim = lim ———
h—0 h h—0 h h—>0 h
= lim 3+ 3h + h?) = 3+ 3(0) + 0% = 3.
h—0
2 1
11. lim 2x7+
x—>—1 2x% 4+ 3x +1
. 2x +1 . 2x +1 .
SOLUTION im ~————= lm ——————=lim =2.
x—>—14 2x% +3x +1 x—>—1 2x+DHx+1) x—>—1 X+ 1
2 _
12 lim 2 =2

x—>3x2-9
SOLUTION As x — 3, the numeratox? — x — 6 while the denominatox? — 9 — 0; thus, this limit does not exist. Checking
the one-sided limits, we find

. x2—x . x(x—=1)
lim = |lim ———~ = —
x—>3— x2 -9 x—3— (x — 3)()C =+ 3)
while
x2—x . x(x—1)

lim = lim —— =
X34 2—0  xo3t (r—3)x+3)
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2 _ _
13, fim 244
x—2 2x2-8
0 3x2—4x—-4 . (Bx4+2(x-2) 3x+2 8
SOLUTION  lim = = =_ =
x—>2  2x2-8 x=>22(x =2)(x +2) x—22(x+2) 8
3 _
14 jim Gt 27
h—0 h
SOLUTION
B4+ h3-27 274+27Th+9h%2 +h3—27 . 27Th + 9h% + K3
im ———— = lim = lim
h—0 h h—0 h h—0 h
= lim (27 4+ 9% + h?) = 27 + 9(0) + 0% = 27.
h—0
2t —~1
15. lim
t—0 47 —1
4P G (L | .
SOLUTION  lim = lim ( @+ _ lim (4" + 1) = 2.
tto0 47 —1 t 100 4t — 1 t—0
h+2)2—9h
1&”m£_il___
h—4 h—4
(h+2)2%—-9n W2 —5h+4 . (h=1D)(h—4 .
SOLUTION  lim (h+2) = lim te_ lim M = lim(Mh—-1)=3.
—4 h—4 h—4 h—4 h—4 h—4 h—4
, —4
17. lim VX
x—16 x — 16
—4 —4 1 1
SOLUTION  lim VX = lim VX = lim = —.
x—>16 x —16  x—16 (ﬁ+4) (\/_—4) x—>16 /x+4 8
18, lim 24
t—>—212 —3¢2
. 2t + 4 2(t +2) 1
SOLUTION |lm —— = — = lm — =_.
1>—212-312 15230 —-2)(t+2) t>—2-3r-2) 6
2 _
19. fim L *2 12
y—3 y3 — 10y + 3
2 _ _
SOLUTION  lim y_ +y-12 = O -3 +4 = & = l
y=>3y3—10y+3 y=3(y—=3)p2+3y—-1) y=>3(»2+3y—1) 17
1 1
—
o0, |im t27 4
h—0 h
SOLUTION
11 4—(h+2)? 4—(h2+4h+4) —h2—4h
2 2 2 2
lim #+2) 4 _ lim 4G0+2? i 4042 — lim 40+2)
h—0 h h—0 h—0 h h—o0 h
h —h—4
— lim 2+2)2 —h-4 _-4_ 1
h—0 h h—0 4(h + 2)2 16 4
21|m]iziﬁ:2
h—0 h
. Ah+2-2 .
SOLUTION  lim ————— does not exist.
h—0 h
Vi+2-2 (Wh+2-2)(Vh+2+2) h—2
e Ash — 04, we have = = - —
h h(Vh+2+2) h(Vh+2+2)
Vit2-2 (Vh+2-2)(Vh+2+2)  h-2

e Ash — 0—, we have

Vx—4-2

22.
x—38

lim
x—8

h B h(Vh +2+2)

T hWhtzt+2

125
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SOLUTION
lim Vx—4-2 — lim (Wx—4-2)(V/x—4+2) _ lim x—4—4
x—8 x—38 x>8  (x—8)(vVx—4+2) x—>8 (x —8)(v/x —4 +2)
= lim ! = ! —l
a8 x—4+2 JAt+2 4
. x—4
L Ry
SOLUTION
im x—4 — lim (x—4(/x+V8—x) — lim (x—4(/x+V8—x)
X4 X—B—x x4 (- VB-x) (VX +VB—x) x4 x—(8—x)

i GTHWEE VBT L (/A VB

T x4 2x—8 T x4 2(x —4)

_ jim (Wx+v8-x) «/Z+«/Z_2

T x4 2 - 2 T
24 fim Y2 —* 1

x—>4 2—./x
SOLUTION
fim 27X i (2L ) iy oy
¥4 2—Jx xoa\ 2—Jx —x+1) x> 2-m5s—x+1)
Q-VDC+VD o 24T

42— Dx ) doxtl

25')!@4(f1—2_xi4)
( 1 4 ): i /X 24 _ Jrx—2 1

SOLUTION  lim
x—>4

Jx=2 x-—4

G- (it T (a2 &

2. Jim (=)
" x—04+ \ /X /X2 + x

SOLUTION
im (1 1 )_ lim Vi+1-1 lim (Vx+T1-1)(Vx+T1+1)
0+ \Vx Va2 +x) a0+ SVx+ 1 x50+ JxVa+ (VxR 14+1)
— lim o — lim VX
a0+ X L(Va 1) x>0k a1 (Vr F L)
cot
27. lim —%
x—0 CSCx
. cotx . cosx .
SOLUTION  |lim = lim — -Sinx = cos0 = 1.
x—0 CSCx x—0 SINx
. cotd
28. lim ——
6% csch
. cotd . cosh . T
SOLUTION |lim —— = |lim —— -sinf = cos— = 0.
92 csco 6—>Z sinf
22 42t 90
20, lim == —20

t—>2 2t —4
o224t 20 (21452 —49)
SOLUTION lim = lim
t—2 20 —4 t—>2 20 —4

30, lim (—— - 2
x>1\1—x 1—x2

= lim@' +5 =09.
t—2
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. 1 2 . (14+x)-2 =1 1
SOLUTION  lim —— ] = lim ——— = |im = ——.
x—>1\1—-x 1-x2 =1 (1—x)(1+x) x>11+x 2

sinx — cosx

31. lim
x—)% tanx — 1
. Sinx —COSx COSx . (sinx — cosx) cosx T N2
SOLUTION lim . = lim - =C0S— = —.
x>z tanx — 1 cosx x—Z Sinx — COSx 4 2

32. lim (sect —tanf)
0—>%

SOLUTION
. . 1—sinf 1+snd _ 1—sn?9 _ cosf 0
lim (secfd —tanf) = lim s — = lim ———— = lm ——— =_- =0.
6—>% 6—>% cosf 14+sné 6—>% cosf (1 + sinf) 0—-Z 1+ sin6d 2
1 2
33. lim —
[ (tan@ -1 tarff - 1)
SOLUTION  lim ! 2 = i tanf+hH-2 _ iy 1
9>z \tanf —1 tart6—1/) ¢z (tanf + I)(tand —1) gz tanf+1 2’
. 2c0s® x +3cosx —2
34. lim Xt al
x-)% 2cosx — 1
SOLUTION
. 2008 x +3cosx —2 _ (2cosx — 1) (cosx + 2) ) T 5
lim = lim = lim cosx +2=cos— +2= .
x—)% 2cosx — 1 x—)% 2cosx — 1 x—)% 3 2
—4 . . . . .
35. Use a plot of f(x) = X" toestimate lim f(x) to two decimal places. Compare with the answer obtained
Jx— /8 —x x—>4
algebraically in Exercise 23.
_ _ x—4 ; ; ~ . ;
SOLUTION Let f(x) = Vi From the plot off(x) shown below, we estlmagce_)lzl‘m‘(x) 2.00; to two decimal places,
this matches the value @fobtained in Exercise 23.
¥
2.001
2.000
1.999
1.998
1.997
1.996
1.995 + + + + — X
36 38 40 42 44
= 1 4 . . . . .
36. Use a plot of f(x) = ﬁ >z to estimate Ile(x) numerically. Compare with the answer obtained alge-
X — X — xX—>
braically in Exercise 25.
SOLUTION Let f(x) = xl 5~ x4T4- From the plot of f(x) shown below, we estimate Izi‘nf(x) ~ 0.25; to two decimal
- x—>

places, this matches the value%)bbtained in Exercise 25.

y

0.2561
0.254
0.252

0.25
0.248
0.2461
0.244
0.242

X
36 38 4 42 44

In Exercises 37—-42, evaluate using the identity

a’l—b3 = (a—b)(a2 +ab + b?)
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3_

37. lim =
x—>2 X —
3 2
. -8 . xX=2)(x*+2x+4 .
soLuTion  lim X = lim =2 ) = lim (x2+2x+4> =12.
x—=2 x—2 x—2 x—2 x—2
3
. —-27
38. lim
x—>3 x*—9
ox3-27 o (x=3)(x?+3x+9) (¥ +43x+9) 27 9
SOLUTION  lim = lim = lim = — =-.
x—3 x2—-9  x-3 (x=3)(x +3) x—3 x+3 6 2
2
—5x +4
39. lim ’637)“'
x—>1 x> —1
. x2—5x+4 . x—Dx—-4 . x—4
SOLUTION  lim ———— = = — =1
x—>1  x3—1 x>l (x—D(x2+x+1) x—>1x2+x+1
3
8
40. lim _Hs
x—>—2x24+6x+8
. x3+38 (42 -2x+4) o xr—2x 44 12
SOLUTION  |lim ———— = = - = — =6
x>—2x24+6x4+8 x->—2 (x+2)(x+4) x—>—2 x+4 2
4
-1
41, lim =
x—>1 x> —1
SOLUTION
lim xt—1 im 2-DE2+1) =D+ D2+ (x+ D241 4
x>1x3 -1 x>1(x=DE24+x+1)  x>1 x=DE2+x+1)  x>1 24+x+1) 3
x —27
42, lim ————
x—>27x1/3—3
. - 27 : 13 _3)(x2/3 +3x1/3 1+ 9 .
soLution  fim =2 _ jim & 3 I i (x3/3 4+ 3x1/3 4 9) =27
x—>27 x1/3 -3 x>27 x1/3 -3 x—>27
4
. NM1+h—1 . ) .
43. Evaluateh I|m+. Hint: Setx = ¥/1 + & and rewrite as a limit as — 1.
—0

SOLUTION Letx = ¥T+h.Thenh=x*—1=(x—=1D(x+ )(x2+1),x > 1 ash — 0 and

T+ h-1 x—1 _ 1 1
lim X" " — |im =lm — =
=0 h x>l (x—DE+DE2+1) x>1(x+DZ2+1) 4
3
N1+ h=-1 . .
a4, Evaluateh Imﬁ. Hint: Setx = YT+ % and rewrite as a limitas — 1.
-0 +n—

SOLUTION Letx = YT+ h. ThendT+h—-1=x2-1=(@x-Dx+1), JI+h—-1=x3—-1=(x-DEZ+x+1),
x — lash — 0and

N+h-1 (x—Dx+1) . x+1 2
= lim = lim

im — = = - _Z
0 T+ h—1 x>1(x—-DE2+x+1) x>1x24+x+1 3

In Exercises 45-54, evaluate in terms of the constant
45. lim (2a + x)
x—0
SOLUTION  lim (2a + x) = 2a.
x—0
46. lim (4ah + 7a)
h—>—2
SOLUTION lim (4ah + 7a) = —a.
h—>—2
47. lim (4t —2at + 3a)
t—>—1
SOLUTION  lim (4t —2at + 3a) = —4 + 5a.
t—>—1

(3a + h)? — 94>

48. |lim
h|—>0 h
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 (Ba+h)?-92 . 6ah+h*
SOLUTION  lim M = lim bah + 17 _ lim (6a + h) = 6a.
h—0 h h—0 h h—0

2(a + h)? — 242

49, I|
h—0 h
2 2 — 24> 4ha + 2h?
SOLUTION  |lim ath)y —2a = lim fhatoh” lim (4a + 2h) = 4a.
h—0 h h—0 h h—0
24,2
50. lim O +a)” —4x”
x—a X —a
SOLUTION
(x4 a)? —4x2 . (x% 4 2ax +a?) — 4x? . —=3x% 4+ 2ax + a?
lim ——————— = lim = lim —
x—a X —a x—a XxX—a x—a X —a
_ (a—x)(a+ 3x)
_x—)aT == ||m( (a+3x)) ——
51. lim M
x—a X —a
. — . 1 1
SOLUTION | “/_ va = lim VX —a =lm ———=—.
—a x—a x%a(\/——\/ﬁ)(\/}+\/ﬁ) x=a /x +Ja 2a
52 fim Y4 2h—Va
h—0 /’l
SOLUTION
im Yet2h—va . (Va +2h — Ja) (Va + 2h + /a)
h—0 h h—0 («/a +2h + f)

2h 2 1
= lim = lim =—.
h—>0h(va+2h+a) h—>0a+2h+.Ja Ja

(x+a)3—d3

53. lim
x—>0 X
3 3 3 2 2 3 3
. x+a)’—a X 3x“a + 3xa a’ —a .
soLuTion  lim S HOT =@, + + = lim (x? + 3xa + 3a?) = 3d°.
x— X x—0 X x—0
1 1
54, lim L4
h—a —a
1 1 a—h
7T a . ah . a—h 1 =1 1
SOLUTION I|m = lim = lim = lim — = ——
ah—a h—sah—a h—oa ah h—a h—aah a?

Further Insights and Challenges

In Exercises 55-58, find all values©$uch that the limit exists.

2
—5x—6
55. lm » Y72
x—>c X —cC
x2—-5x—6 . . . . . . e
SOLUTION )!@C —— will exist provided thatx — ¢ is a factor of the numerator. (Otherwise there will be an infinite
X —
discontinuity atx = ¢.) Slncex —5x —6 = (x + 1)(x — 6), this occurs for = —1 andc = 6.
. 3 >
56, fim S F3x+c
x—1 x—1
2
. 3 . .
soLution  lim X HE oists as long agx — 1) is a factor ofx2 + 3x + c. If x2 +3x + ¢ = (x — 1)(x + ¢), then

x—1 x—1
q—1=3and—g = c. Henceqg = 4 andc = —4.

57. 1im (1 ¢
x—>1\x—1 x3-1

SOLUTION  Simplifying, we find

1 c XZ+x+1—c

x—1 -1 (x-DE2+x+1)"

In order for the limit to exist as — 1, the numerator must evaluate to Qa& 1. Thus, we must havgé — ¢ = 0, which implies
c=3.
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14 ex?—V1+x2
58. lim

x—0 x4

SOLUTION Rationalizing the numerator, we find

1+ex2—V1+x2 _ (A +cx? = VT+x2)(1 + cx? + V1 + x2) _ (A +cx®H?2—(1+x?)

x4 x4+ cex2 + V1 +x2) x4+ cex2 + V1 +x2)
_ Q2c— x? 4 c2x*
x4+ ex2 + VT4 x2)

In order for the limit to exist as — 0, the coefficient ofc2 in the numerator must be zero. Thus, we need- 1 = 0, which
impliesc = 1.

59. For which sign+t does the following limit exist?

. 1 1
im (- 4+ —
x—>0\x x(x—1)
SOLUTION
=D+ 1

1 1
e Thelimit lim { — + ——— ] = |lim — - _1.
x=>0\x  x(x—1) x>0 x(x—1) x—=>0x —1

1 1
e The limit lim (—
x—0

— ——— ] does not exist.
x x(x—=1)

1 1 —-1-1 -2
— Asx — 0+, we have— — :(X ) — — 00.
x x(x-—=1 x(x—1) x(x—1)
—ASx—>0—,Wehavel— _G-h-1_ x-2 = oo,
x x(x—=1) x(x—=1) x(x—1)

2.6 Trigonometric Limits

Preliminary Questions

1. Assume that-x* < f(x) < x2. What s Iin(])f(x)? Is there enough information to evaluate 1Iiyf(x)? Explain.
x— x—>3

SOLUTION  Sincelimy o —x* = limy_,¢ x? = 0, the squeeze theorem guarantees thatlim /(x) = 0. Since lim__ | —x* =
2

1677 = Ilmx_>% x<, we do not have enough information to determlnexlin% f(x).

2. State the Squeeze Theorem carefully.

SOLUTION Assume that forx # ¢ (in some open interval containing,
I(x) = f(x) = u(x)

and thatxﬂ)ncﬂ(x) = x“an u(x) = L. Thenxll_r)rg f(x) exists and

fim, 9= L.
in5h
3. If you want to evaluat% Ii%, itis a good idea to rewrite the limit in terms of the variable (choose one):
—
5h
(@) 6 =5h (b) 6 =3h (0)9:?

SOLUTION To match the given limit to the pattern of

it is best to substitute for the argument of the sine function; thus, rewrite the limit in terfax 6f= 5h.
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Exercises
1. State precisely the hypothesis and conclusions of the Squeeze Theorem for the situation in Figure 1.

Y u(x)

2 J)

1(x)

1 2
FIGURE 1
SOLUTION  Forallx # 1 on the open intervald, 2) containingx = 1, £(x) < f(x) < u(x). Moreover,
lim £(x) = lim u(x) = 2.
x—1 x—1
Therefore, by the Squeeze Theorem,
lim f(x)=2.
x—1
2. In Figure 2, isf(x) squeezed by (x) and/(x) atx = 3? Atx = 2?

y

FIGURE 2

SOLUTION Because there is an open interval containing 3 on which/(x) < f(x) < u(x) and Iin; l(x)= Iim3u(x), f(x)
x— x—
is squeezedy u(x) and/(x) atx = 3. Because there is an open interval containing 2 on which/(x) < f(x) < u(x) but
lim I(x) # lim u(x), f(x) istrappedby u(x) and/(x) atx = 2 but notsqueezed
x—2 x—2
3. What does the Squeeze Theorem say abou7t Sig) if Iim7 I(x) = Iim7u(x) = 6 and f(x), u(x), and/(x) are related as in
X—> xX—> Xx—>
Figure 3? The inequality’(x) < u(x) is not satisfied for alk. Does this affect the validity of your conclusion?

y
f(x)

u(x)
1(x)

i
FIGURE 3

SOLUTION The Squeeze Theorem does not require that the inequdlittgs< f(x) < u(x) hold for all x, only that the
inequalities hold on some open interval containing: c. In Figure 3, it is clear that(x) < f(x) < u(x) on some open interval
containingx = 7. Because Iir;m(x) = Iim7l(x) = 6, the Squeeze Theorem guarantees tha7t Jigy) = 6.

x—= x— x—

4. Determine Iier(x) assuming that cos < f(x) < 1.
xX—>
SOLUTION Because limcosx = lim 1 = 1, it follows that lim f(x) = 1 by the Squeeze Theorem.
x—>0 x—0 x—0
5. State whether the inequality provides sufficient information to determinleﬂ(m), and if so, find the limit.
X—>

(@) 4x—5< f(x) <x?
(b) 2x — 1 < f(x) < x?

(© 4x—x? < f(x) =x?+2
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SOLUTION
(a) Because Iirlr(4x -5 =-1#1= Iim1 x2, the given inequality doesot provide sufficient information to determine
xX—> x—>

limy—1 f(x).
(b) Because qu(Zx -1H=1= Iimlxz, it follows from the Squeeze Theorem that Jim; f(x) = 1.
xX—> xX—>

(c) Because qu(4x —x%)=3= Iiml(x2 + 2), it follows from the Squeeze Theorem that lim; f(x) = 3.
xX—> xX—>
6. Plot the graphs ofi(x) = 1 + |x — %| and/(x) = sinx on the same set of axes. What can you say about fi(w)
x—=Z

if f(x)is squeezed bj(x) andu(x) atx = 3?

SOLUTION

ux)=1+x-x/

I(x) =sin>

X

/2

lim u(x) = 1and lim /(x) = 1, so any functionf(x) satisfying/(x) < f(x) < u(x) for all x nearz/2 will satisfy
x—m/2 x—m/2

lim f(x)=1.
x—>m/2

In Exercises 7-16, evaluate using the Squeeze Theorem.

7. lim x?

1
COS—
x—0 X

L < x2 Because

SOLUTION  Multiplying the inequality—1 < cos1 < 1, which holds for allx # 0, by x? yields—x? < x2 cosi <

lim —x% = Iim x2 =0,
x—0 x—0

it follows by the Squeeze Theorem that

. 1
lim x2cos— = 0.
x—0 X

. 1
8. lim xsin —
x—0 X

SOLUTION  Multiplying the inequality‘sinxlz’ < 1, which holds forx # 0, by |x| yields’x sinxiz’ < |xlor—|x| < xsinL <

|x|. Because

lim —|x| = lim |x| =0,
x—0 x—0

it follows by the Squeeze Theorem that

. 1
lim xsin— = 0.
x—0 X

9. lim (x — 1) sin
x—1 X —

SOLUTION  Multiplying the inequality|sin<Z; | < 1, which holds forx # 1, by [x — 1] yields |(x — 1) sin:Z¢| < |x — 1| or
—|x = 1] = (x = 1) sinz% < |x — 1|. Because

lim —|x =1 = lim |x—1] =0,
x—1 x—1

it follows by the Squeeze Theorem that

lim (x — 1) sin—— =0
x—1 x—1

_3
10. lim (x2 — 9)—~
x—3 [x — 3]
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SOLUTION Forx # 3, % Ix 3| = +1; thus

2 -9 < (-9 < x2 9.

|x 3|
Because
lim —|x2 =9 = lim [x2—=9| =0,
x—3 x—3

it follows by the Squeeze Theorem that

-3

=0.
|x — 3|

lim
x—+3(x )
. P 1
11. lim (2" — 1) cos-—
t—0 t

SOLUTION  Multiplying the inequality‘cos}‘ < 1, which holds forz # 0, by |2 — 1] yields |(2" — 1) cost| < |2/ — 1| or
—[2f — 1] = (2" — 1) cos} < |2 —1|. Because

lim —2" — 1] = lim |2 = 1| =0,
t—0 t—0
it follows by the Squeeze Theorem that
. ¢ 1
lim (2 —1)cos— = 0.
t—0 t
12, lim  /x e/
x—>0+

SOLUTION Since—1 < cos% < l ande” is an increasing function, it follows that

< ¢0s7/x) < o and l\/f < ﬁecos(”/x) <eq/x.
e

Q| ==

Because

. 1 .

lim —x= lim ey/x =0,
x—>0+ e x—>0-+

it follows from the Squeeze Theorem that

lim /xe®s/%) — ¢,
x—>0+

. 1
13. I|m (t2 — 4)cos——
t—2

SOLUTION Multlplylng the |nequaI|ty’cos—‘ < 1, which holds forr # 2, by |¢2 — 4] yields|(t> — 4) cos; 25| < |12 — 4| or
—[t?2 — 4] < (1? —4)cos;L; < |1? —4|. Because

lim —|¢2 — 4] = lim |2 — 4| = 0,
t—>2 t—2
it follows by the Squeeze Theorem that

. 1
lim (12 — 4) cos—— = 0.
=2 t—2

1
14. lim tanx cos(sin —)
x—0 X

SOLUTION  Multiplying the inequality‘cos(sinl)‘ < 1, which holds forx # 0, by | tanx| yields‘tanx cos(sin%)‘ < |tanx|

or —|tanx| < tanx cos(sm ) < |tanx|. Because
lim —|tanx| = lim [tanx| =0,
x—0 x—0

it follows by the Squeeze Theorem that

1
lim tanxcos(sm ) 0.
x—0
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15. lim cosé coqtand)
0—>%

SOLUTION  Multiplying the inequality| cogtanf)| < 1, which holds for alld nearZ but not equal toF, by | cosf| yields
| cosf coqtanf)| < | cosh| or —| cosf| < cosh coqtand) < | cosh|. Because

I|m —|cosf| = lim |cosf| = 0,
-3 0—%

it follows from the Squeeze Theorem that

lim cosf coqtanf) = 0.

6—>%

16. I|m+ sinz tar 1(In7)

SOLUTION  Multiplying the inequality|tan—!(Inf)] < Z, which holds for allz > 0, by |sinz| yields |sinz tan~!(In¢)| <
Z|sint| or—Z|sin¢| < sinz tan~ Line) < Z|sint|. Because

lim —|sint| = I|m |sint| =0,
t—>0+

it follows from the Squeeze Theorem that

I|m+ sinz tan~I(In7) = 0.

In Exercises 17-26, evaluate using Theorem 2 as necessary.

X tanx
17. lim ——
x—>0 X
. tanx . sinx 1 . sinx 1
soLuTioN  |Im —=1lm — — = lim — - lim — =1-1=1.
x—>0 X x—0 Xx COSx x—>0 X x—0 COSx
. sinxsecx
18. lim ———
x—0 X
. Sinx secx . sinx
SOLUTION |m —— = |lim — - limsecx =1-1=1.
x—0 X x—>0 Xx x—0
.13+ 9sing
19. lm ———
t—0 t
. 13 4+ 9sin¢ sint
SOLUTION |Im0f I|m Vi3 + I|m z  =J9.1=3.
t—
sir? ¢
20. lim ——
t—>0 t
_sin?t _sint sint ..
SOLUTION |lim —— = |lim — sint = lim — - limsint =1-0=0.
t—0 1 t—0 t—0 t—0
2
21. lim
x>0 sin? x
o x? _ 1 _ 1 1 11
SOLUTION  |lim — =lim —— = 1lm — - lim — =--- = 1.
x—0 si® x  x—0 Sinx snx x—0 Sinx 50 Sinx 1 1
X X X X
. 1—cost
22. lm ———
t—>%

.1 —cost . . . o
SOLUTION The functlonf is continuous ag; evaluate using substitution:

.1 —cost 1-0 2
im —— = —/—=—.
t—)% t 5 T
. secd —1
23. lm —
0—0 6
. secd —1 . 1—cosb . l—cosh . 1
SOLUTION lim ——— = |im = lim - lim =0-1=0.

6—0 0 6—0 0O cosb 6—0 0 §—0 COSH
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1 — cosé
24, lim ———
6—0 sSinf
SOLUTION
1 — cosé . 1 —cosf
im ———=1Ilm——-1lim—=0-1=0.
6—0 sSinf 6—0 0 6—0 Sind
sint
25. lim —
- 1
sint . . b4 N
SOLUTION - is continuous at = 7 Hence, by substitution
_sint 4 272
I|m - = =
t—)% t T b3
. cost —cos ¢t
26. lm ——
t—0 t
SOLUTION By factoring and applying the Product Law:
. cost—cogt . 1—cost
im —— = lim cost - lim =1(0) = 0.
t—0 t t—0 t—0
. sinl4x
27. LetL = lim
x—0 X
. . sind
(@) Show, by lettingg = 14x, thatL = lim 14——.
6—0 6
(b) ComputeL.
SOLUTION
(@) Letf = 14x. Thenx = % andf — 0asx — 0, so
. sSinldx . sing . sind
L=Im —— = |lim —— = |lim 14—
x—>0 X 6—0 (9/14) 6—0 0
(b) Based on part (a),
. sinf
L=141m 2% _ 4.
9—0 0O
. sin% . sin% 9\ (sin% Th
28. Evaluate Im?—.Hnnt: I— = (2) (22 — .
h—0 Sin7h sin7h 7 Oh sin7h
SOLUTION
sin9h . 9(sin%)/(9h) _ 9limy_,o(sinOh)/(Oh) 9

19
m = lim = = —2.-=2
Ao SinTh A0 7 @nThy/(Th)  Tlimuoe@nT () 7 17

In Exercises 29-48, evaluate the limit.

in9h
29. lim 21
h—0
. Sin9 . sin9h
SOLUTION lim ——— = lim 9 =0.
h—>0 h h—0 9h
sin4h
30. lim 2
h—0 4h

SOLUTION Letx = 4h. Thenx — 0 ash — 0 and

. sindh . sinx
lim =limx - 0—— =1.
h—0 4h X

135
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32. lim —
x—Z Sin3x

. 6
SOLUTION |im — = L = Z_
x—Z sin3x  sin(z/2) 6
sin76
. lim —
6—0 Sin30

SOLUTION We have

sin76 7 sin70 30
sin3d ~ 3\ 76 sin36

Therefore,
sin70 7 sin70 36 7 7
lim =—|{ lim lim — =—-()() ==
6—0 30 3 (9—)0 70 ) (9—>0 Sln39) 3( )V 3
tan4
34, lim St
x—0 O9x
. tandx .1 sindx 4 4
SOLUTION  lim = lim - - . = —.
x—0 9x x—09 4x cosdx 9
35. lim xcsc25x
x—0

SOLUTION Leth = 25x. Then

. . h 1 . h 1
lim xcsc25x = lim —csch = — |Iim —— = —.
x—0 h—0 25 25 h—0 Sink 25
tandt
36. lim
t—0 t Sect
. tandr . 4sin4t . 4cost sin4t
SOLUTION lim =lim———=Ilm —— — =4
t—>01sect t—04tcos(4t)sedt) t—0 Cos4t 41
sin2h sin3h
37. lm —————
h—0 h2
SOLUTION
im sin2h sin3h — lim sin2h sin3h — lim sin2h sin3h
h—0 h? T hs0  h-h T hso0 h h
. sin2h _sin3h . sin2h . sin3h
= |lim2——3—— = lim 2 lim3—— =2-3=6.
h—0 2h 3h h—0 2h h—o 3h
sin(z/3
38, lim Sn</3)
z—0 SInz
. sin(z/3 3 1 sin(z/3 1
SOLUTION  lim (.z/)__z/ = - (2/3) = -
z—0 Sinz z/3 z—03 sinz z/3 3
sin(—36
3. fim N30
6—0 Sin(46)
. sin(—30) . —sin(36) 3 46 3
SOLUTION |lim ————= = o =——.
6—0 Sin(40) 6—0 30 4 sin(40) 4
tan4
40. lim x
x—0 tan9x
. tandx . cos9x sindx 4  9x 4
SOLUTION lim = lim . = — = —.
x—0tan9x  x—0 Cc0S4x 4x 9 sin9x 9
csc8t
. lim
t—0 cscdt
. csc8t . sindr 8¢ 1 1
SOLUTION lim =lim — - —.-=—.
t—0Ccsc4t t—0sSin8t 4r 2 2
sin5x sin2
42, |im X SEX
x—0 Sin3x sin5x

3x

. sin5xsin2x . sin2x
SOLUTION |im m ==
sin3x

— =i
x—0 sin3xsin5x x—0 2x

Wl N
Wl N



SECTION 26 | Trigonometric Limits 137

43, lim 5|n3).c5|n2x
x—0 xSn5x
. sin3xsin2 . sin3x 2 (sin2 2 6
SOLUTION lim wz lim (3 ! x~—(_ x) /(2x) = -
x—0 xSin5x x—0 3x 5 (sin5x)/(5x) 5
1 —cos2h
4, m ——
h—0 h
.1 —cos2h . 1 —cos2h . 1—cos2h
SOLUTION |Im ——— = Iim2— =2 |lim ———— =2-0=0.
h—0 h h—0 2h h—0 2h
45, lim sin(2h)(1 — cosh)
h—0 h2
. sin(2h)(1 — cosh) . sin(2h) . 1—cosh
SOLUTION |lim ————————~ = |lim lim =1-0=0.
h—0 h? h—>0 h h—0 h
1— 21
46. lim —— 250
t—>0  sin? 3¢

SOLUTION  Using the identity co8s = 1 — 2sin? ¢, we find

1—cos2t  2sit 2 (sint)2( 3t )2
si3r  si3r 9\ ¢ sin3r ) -

Thus,
_1—cos2t . 2(snt\*( 3t \* 2
im ———— = lim - { — — ) =Z.
t—0 sin? 3t t>09 \ ¢ sin3t 9
. €0S260 — cosf
47, Im ——
0—0 (2
SOLUTION
. €0Ss26 — cosf . (cos26 — 1) + (1 —cosh) . cos26 —1 . 1—cosf
im ——— = lim = lim + lim
6—0 0 6—0 0 6—0 0 6—0 0
.1 —cos26 .1 —cosd
= -2 lim + lim =-2.-0+0=0.
8—0 26 6—0 0
1 —cos3h
48. Im ——
h—Z

SOLUTION The function is continuous zg SO we may use substitution:

i l1—cos3h 1-cos37 1-0 2
h—)% h % % b
. sin
49. Calculate lim
x—>0— |x]|
SOLUTION
| sinx I sinx 1
x—0— |x|  x—0— —x
. _— . . ... sin36 —3sind
50. Use the identity siBf = 3 sind — 4sin® 6 to evaluate the Ilmlg IlmT.
—0

SOLUTION  Using the identity sig = 3sing — 4sin’ 6, we find

sin30—3sin(9__4 sing\ 3
93 a 6 )

Therefore,

i SN30 —3sine (sin9)3 41 = s
6—0 63 o 0—0 0 - - '

51. Prove the following result stated in Theorem 2:
1—cosf

lim — 0

6—0
1—cosf 1 1 —cos 6

Hint: = .
nt-—5 1+ cosb 9
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SOLUTION
im 1—cosf im 1 1-cogf - 1 sin? 6
6—0 0 0—>0 1+ cosh 0 e—>o 1+cosd 6
. 1 _ sito . 1
= lim —— - lim = lim —— - lim S|n9
9—»01+cosfd 9g—-0 6 6—0 1 +cosf 6—0
1 sin@ 1
= lim ——— - lim sin@ - I|m—:—~0~1:0.
9—0 1 4+ cosf -0 -0 0 2

h
numerically (and graphically if you have a graphing utility). Then prove that the limit is

. 1=
52. Investlgateh lim
—0

2
equal to%. Hint: See the hint for Exercise 51.

SOLUTION
h —0.1 —0.01 0.01 0.1
1 —cosh
T 0.499583 | 0.499996 | 0.499996 | 0.499583
|
The limitis 5.
05
ﬂ\
0.31
0.21
0.11
+ + + + X
2 1 2
Iiml cosh —iim —coh , (sinh 2 1 1
h—>0  h2 h—0 h2(1+cosh) h—>0\ & 1+cosh 2

In Exercises 53-55, evaluate using the result of Exercise 52.
cos3h — 1
53. lim ————
h—0 h2
SOLUTION  We make the substitutiofh = 34. Thenk = 6/3, and

im cos3h — 1 — lim cosf — 1 — 9 lim 1 —cosb 9
0 h2 g0 (0/3)2 gm0 62

N

cos3h — 1

o lim ——
h—0 COS2h — 1
SOLUTION  Write

cos3h—1 1—cos3h  (2h)2  9h?

cos2h—1  (3h)2  1—cos2h 4h2’
Then
i cos3h—1 9 lim 1 —cos3h . en* 91 1 9
h—0C0S2h —1  4h—>o (3h)2  h—ool—cos2h 4 2 1/2 4
55. Jim Y1~ %!
t—0 t

. «/1 — cost 1 cost V2 ~ /T—=cost
SOLUTION lim —; on the other hand, |IM— =
t—0+ t—>0+ 2 t—0— t

i l—cost 1_ f

t—>0—



SECTION 2.6 | Trigonometric Limits 139

56. Use the Squeeze Theorem to prove thit—'jc lif(x)| = 0, thenxll_r)rl f(x)=0.
SOLUTION Suppos%c_ll)rp|f(x)| = 0. Then

Jim /GOl =~ lim | ()] = 0.
Now, for all x, the inequalities

/@)= f(x) = /()]

hold. Becausa_l}ircﬂf(xﬂ =0 andxli_>nl —|f(x)| = 0, it follows from the Squeeze Theorem tk)lca_twliyf(x) =0.

Further Insights and Challenges

57. Use the result of Exercise 52 to prove thatfot 0,

2

. cosmx —1 m

Iim —— = ——

x—0 x2 2

. . cosmx — 1 . u
SOLUTION  Substitutex = mx into ———We obtainx = ;2. Asx — 0, u — 0; therefore,
X

. cosmx—1 . cosu—1 . ,cosu—]1 o 1 m?
I|m72: 72:|Imm 72:"’1 —= = ——
x—0 X u—>0 (u/m) u—0 u 2 2

58. Using a diagram of the unit circle and the Pythagorean Theorem, show that
si? 6 < (1 — cosh)? + sin? 6 < 62
Conclude that sthd < 2(1 — cosf) < 62 and use this to give an alternative proof of Eq. (7) in Exercise 51. Then give an alternative

proof of the result in Exercise 52.
SOLUTION

¢ Consider the unit circle shown below. The trian@B A is a right triangle. It has bade— cosf, altitude sirf, and hypotenuse
h. Observe that the hypotenuses less than the arc lengthB = radius- angle= 1-6 = 6. Apply the Pythagorean
Theorem to obtairfl — cosf)? + sin? @ = h2 < 62. The inequality sih 0 < (1 — cos#)? + sin? § follows from the fact
that(1 — cos6)2 > 0.

@

e Note that
(1—cosh)? + sit @ = 1 —2cosf + cos’ O + si? § = 2 —2cosf = 2(1 — cosb).
Therefore,
sin? § < 2(1 — cosf) < 62.

¢ Divide the previous inequality b36 to obtain

sk 1—cosd 0
< — < —.
20 0 -2
Because
. sin*g 1 . sing 1
0IT>10 20 EelTJOT 'ell?osme o 5(1)(0) =0

6
and lim 5= 0, it follows by the Squeeze Theorem that

h—0

. 1 —cosf
im ——— =0
0—0 0
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¢ Divide the inequality

by 262 to obtain

si? @ < 2(1 — cosf) < 62

sild 1-—coshd 1
< < —.
202 — 92 -2
Because
sifg 1 sing\?2 1 1
lim =— = lim (=—) =-(1?% = -,
-0 202 29—)0( 0 ) 2( ) 2
1 1
and lim — = —, it follows by the Squeeze Theorem that
h—0 2
lim 1 —cosb 1
6—0 92 2
. . sinx — sinc . . _anm T Emm
59. (a) Investlgatexﬂ)nc‘l P numerically for the five values = 0, 5 4 373
(b) Can you guess the answer for general
(c) Check that your answer to (b) works for two other values.of
SOLUTION
(@)
X c—0.01 ¢ —0.001 c + 0.001 c 4+ 0.01
sinx —sin
el L 0.999983| 0.99999983| 0.99999983| 0.999983
X —C
Herec = 0 and cosc = 1.
X c—0.01 c—0.001 | ¢+ 0.001 c 4+ 0.01
sinx — sin
SO 7 IC | 0.868511| 0.866275| 0.865775 | 0.863511
X —C
Herec = Z and cosc = 4 ~ 0.866025.
X c—0.01 c—0.001 | ¢+ 0.001 c 4+ 0.01
sinx — sin
SO 7 INC | 0504322 0.500433 | 0.499567 | 0.495662
X —C
Herec = Z and cosc = 3.
X c—0.01 c—0.001 | ¢+ 0.001 c 4+ 0.01
sinx —sinc¢
Sinx —sShe 0.710631| 0.707460| 0.706753 | 0.703559
X —C
Herec = Z and cosc = 4 ~ 0.707107.
X c—0.01 ¢ —0.001 c + 0.001 c 4+ 0.01
sinx —sin
SO 7 IC | 0.005000| 0.000500 | —0.000500 | —0.005000
X —C
Herec = 5 and cosc = 0.
sinx — sin
() lim 2222 ose,
xX—>C X —
(©)
X ¢—0.01 ¢ —0.001 ¢ +0.001 ¢+ 0.01
sinx —sinc¢
— | —0.411593 | —0.415692 | —0.416601 | —0.420686
X —C

Herec = 2 and cosc = cos2 ~ —0.416147.
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X ¢—001 | ¢—0.001 | ¢+0.001 | ¢+ 0.01

S~ SNC | 0.863511| 0.865775| 0.866275 | 0.868511

X —cC

Herec = —% and cose = @ ~ 0.866025.

2.7 Limits at Infinity

Preliminary Questions
1. Assume that

xll_r)noo f(x)=L and xl_l)nl g(x) = o0

Which of the following statements are correct?

(@) x = L is a vertical asymptote gf(x).

(b) y = L is a horizontal asymptote @f(x).

(c) x = L is a vertical asymptote of (x).

(d) y = L is a horizontal asymptote gf(x).

SOLUTION

(a) Because _Ijrpg(x) = 00, x = L is a vertical asymptote ¢f(x). This statement is correct.
P

(b) This statement is not correct.
(c) This statement is not correct.
(d) Becausex_l)iorg f(x) = L,y = Lis ahorizontal asymptote of(x). This statement is correct.

2. What are the following limits?

a) lim x3 b) Iim x3 c) lim x*
— — —
P o0 pe —0o0 P —00
SOLUTION
(@) liMy_so0 X3 = 00
() liMyx—s—oo x3 = —c0
(©) liMx——oo x* = 0

3. Sketch the graph of a function that approaches a limit as- oo but does not approach a limit (either finite or infinite) as
X —> —0OQ.
SOLUTION

4. What is the sign of: if f(x) = ax3 + x + 1 satisfies

m 7 3) = oo?

SOLUTION Because lim x3 = —o0, @ must be negative to have limf(x) = oo.
X—>—00 X—>—00
5. What is the sign of the leading coefficiant if f(x) is a polynomial of degre@ such thatx_)li_ngo f(x) = 00?
SOLUTION  The behavior off (x) asx — —oo is controlled by the leading term; that is, Hm —oo f(x) = limy—_ooa7x’.

Becausex’ — —oo asx — —oo, a7 must be negative to have lim, _o, f(x) = oo.

6. Explain why lim sind exists but limsini does not exist. What is limsinL?
x—oo X x—0 * x—o00 X

SOLUTION Asx — 00, + — 0, so
. 1 .
lim sin— =sn0=0.
xX—>00 X
On the other handk — oo asx — 0, and ast — +oo, sin1 oscillates infinitely often. Thus
. 1
lim sin—
x—0 X

does not exist.
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Exercises
1. What are the horizontal asymptotes of the function in Figure 1?

—20 20 40 60 80

FIGURE 1

SOLUTION Because
xﬂn_woo fx)=1 and xﬂ)ngo f(x)=2,

the function f'(x) has horizontal asymptotes of= 1 andy = 2.
2. Sketch the graph of a functiofi(x) that has botty = —1 andy = 5 as horizontal asymptotes.

SOLUTION

3. Sketch the graph of a functiofi(x) with a single horizontal asymptote= 3.

SOLUTION

4. Sketch the graphs of two functiong(x) andg(x) that have botty = —2 andy = 4 as horizontal asymptotes but
lim f(x)# lim g(x).
X—>00 X—>00

SOLUTION

3
5. [GU] Investigate the asymptotic behavior ffx) = 3x—+ numerically and graphically:
X X
(a) Make a table of values of (x) for x = +50, £100, £500, £1000.
(b) Plot the graph off (x).
(c) What are the horizontal asymptotes fofx)?

SOLUTION
(@) From the table below, it appears that

3
. X
lim — =1
x—>+o00 X° + X
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X +50 +100 +500 +1000
f(x) | 0.999600| 0.999900| 0.999996 | 0.999999
(b) From the graph below, it also appears that
3

lim

x—=oo x3 + x

(c) The horizontal asymptote of(x) isy = 1.

. . 12x + 1
6.[GU] Investigate lim ————
9 x—Foo /4x2 + 9
(a) Make a table of values of (x) x+1 for
X) = —— X
V4x2 +9

(b) Plot the graph off (x).
(c) What are the horizontal asymptotes ffx)?

SOLUTION
(@) From the tables below, it appears that

numerically and graphically:

= £100, £500, £1000, £10,000.

im 12x +1 —6 and lim Rx+1 6
x—=00 \/4x2 + 9 x——00 \/4x2 + 9 ’
X —100 —500 —1000 —10000
f(x) | —5.994326 | —5.998973 | —5.999493 | —5.999950
X 100 500 1000 10000
f(x) | 6.004325 | 6.000973 | 6.000493 | 6.000050
(b) From the graph below, it also appears that
i 2L 24l
x—=00 \/4x2 + 9 x—=>=00 \/4x2 + 9 :
y
6 ——
4
2
+ X
-5 _ 5
==—_1-6
(c) The horizontal asymptotes g¢f(x) arey = —6 andy = 6.
In Exercises 7—-16, evaluate the limit.
7. lim
x—>o00 x +9
SOLUTION
lim = Wy L
x—00 x + 9 _x—>oox—1(x+9) _x—>ool_|_% T 140
. 3x2420x
8. lm —s——
x—>oco 4x2 49
SOLUTION
i X2 420x L 2067 +20) 3+2 340 3
x—>00 4x2+4+9  x—o00 x2(4x249)  x—>004 4 2 T 440 4
X
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) 3x2 4+ 20x
9. lim ——~——
x—00 2x4 4+ 3x3 —-29

SOLUTION
2 42,2 3 4+2
3x% 4+ 20x . xX7*(3x7 + 20x) . 2t 53 0
————— = Iim = lim *—*—-=_=0.
x=00 2x4 +3x3 —29  x—ooxT4(2x* +3x3-29) xmoop4 3 % 2
10. lim
x—>oo x + 5
SOLUTION
-1 4
= @ _ x__%_,
x>0 x4+5 x>0 x—l(x+5) X—00 1+% 1
7x—9
11, lim —
x—>004x + 3
SOLUTION
m Tx—-9 im x_1(7x—9)_ i 7—%_7
x—>004x 43 x—oc0 x~L(4x +3) _x—>oo4_|_% T4
_ox2-2
12. lim
x—>00 6 — 29x
SOLUTION
im -2 _ ) S -2 oo -
x>006—29x  x>oox1(6-29x) x>o0 & _p9 29 7
o Ix2 -9
13, lim =
x—>—00 4x +3
SOLUTION
7x% — x1(7x2 -9) . Tx — %
im = = lim = —00
x—>—00 4x +3 X——00 x—1(4x + 3) X—>—00 4 4 %
. 5x -9
14. |Im ————m—
x—>—00 4x3 +2x + 7
SOLUTION
5x — 9 — im x3(5x—9) _ %—x% _0_0
x—>—004x3 4+ 2x +7  x—>—00 x3(4x342x4+7) x—>-004 4 x_22 + x7_3 T4
0 3x3-10
15. lim = —
x—>—o00 x+4
SOLUTION
33310 @310 3x2—lx—0_oo_oo
x>0 x+4  xw-oo xl(x+4) xo-oo |44 1
_2x% +3x% =31
16. lim 22X o —olx
x—>—00 8x4 —31x2 + 12
SOLUTION
. 2x° +3x* —31x . x~42x> +3x* = 31x) . 2x +3 - )3‘—% —00
im ——————— = = Iim — = =_—c0.
x—>—o00 8x4 —31x2 +12 x—>—oc0 x4(8x% —31x24+12) x—>—oc0g_ ;_% + % 8

In Exercises 17-22, find the horizontal asymptotes.
2x2 —3x

Vo f® =353
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SOLUTION First calculate the limits as — +o00. Forx — oo,
2w2-3x . 2-3 2 |
x—>00 8x< + &8 x—)oog_{_?
Similarly,
2x2 —3x . -3 2
Im ez g = m £ 5= 1
X 0o 8x< + X oo 8 + x_2
Thus, the horizontal asymptote ¢{x) isy = %.
8x3 — x2
18. fx) = ————
S ) 74 11x —4x4
SOLUTION First calculate the limits as — +o00. Forx — oo,
_ 8x3 _ x2 ) 8 _ 1
lim xix“: lim —= li‘z =0
x—>00 74 11x —4x x—>00x4+F_4
Similarly,
8 _ 1
8 3_,2 ) S _
lim X7x4: lim —= li‘z =0.
x—>—00 7+ 11x —4x x—>—oox_4+x_3_4
Thus, the horizontal asymptote ¢{x) is y = 0.
36x2 +7
19. f(x) = V3oxT+ 7
: 9x + 4
SOLUTION Forx > 0,x71 = [x71| = v/x72,s0
. 36x2 +7 o3tz 36 2
im —— = lim 7=—:—.
x—>o0 9x +4 X—>00 9_,.5 9 3
On the other hand, far < 0, x™1 = —|x7 1| = —v/x~2, s0
V36x2 +7 36+—__ 36 2
X—>—00 9x + 4 T x—>—00 9+% o 9 o 3"
Thus, the horizontal asymptotes fx) arey = 2 andy = —2.
36x4 +7
20, flx)= Y20+
' 9x2+4
SOLUTION Forallx # 0, x72 = [x 2| = Vx4, s0
im V36x* 47 ,/36 T V36 2
X—>00 9x2+4 x—>oo 9+ o 9 _3'
Similarly,
i Y36X 4T y3otsa V36 2
x—>—00 9x2 + 4 x—)oo 9+ T 9 T3

Thus, the horizontal asymptote ¢{x) is y = %
t

21 f(t) = ——
f0 ==
SOLUTION  With
. et 00
lim =" —
t—oo ]l 4e? 1
and

lim
t—>—oc0 1 4+ et

the functionf(z) has one horizontal asymptote = 0.
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(/3
(6412 + 9)1/6
SOLUTION Fors > 0, t~1/3 = |1=1/3| = (+72)1/6 50

2. f(t) =

t1/3 1 1

im —=|Im —————— = —,
t—>00 (6412 + 9)1/6  t—o00 (64 + %)1/6 2

On the other hand, far < 0, r=1/3 = —|r=1/3| = —(+2)1/6, 50
(173
im ———— = Im ———— =
t—>—00 (6412 + 9)1/6  1—>—0c0 —(64 + t%)l/s
Thus, the horizontal asymptotes f¢i(r) arey = 1 andy = —1.

In Exercises 23-30, evaluate the limit.
. Vx4 +3 2
X—>00 4x3 +1
SOLUTION Forx > 0,x73 = [x 73| = v/x 6, s0

—5

9 3 2
. 9x4 +3x +2 , Z2to 1t
o YETIE o VEEEES
X—>00 4x° +1 X—00 44 3
o A/x3 4+ 20x
24, lm ——
x—>oo 10x —2
SOLUTION Forx >0, x7 ! =[x~ 1| = vx72,s0
20
Vx3 4+ 20x ) X+% oo
im ———— = |lim XY— = — =oo.
x—o00 10x =2 X—00 10_% 10

. 8x2 + 7x1/3
25. lm ——
x—>—00 ,/16x4% +6

SOLUTION Forx <0,x72 = |x 2| = Vx4, s0

im 8x2 4 7x1/3 — lim 8‘*’)65% 8
x=reo Iyt +6  xom flg 6 /16
X
. 4x — 3
26. lim ——> 2
X—=>=00 \/25x2 4 4x
SOLUTION Forx <0,x7 1 = —|x7 1| = —v/x~2, s0
Tt N SN
Xm0 2552 44y XTI s 4 =25
X
413 4 41/3
27. lim R
t—o00 (412/3 4 1)2
R e A 1+ 1 1
SOLUTION  lim 33 5> = lim AT
t—00 (4[ + 1) t—00 (4 + ),‘ZT)
4/3 _ 0,1/3
t 9t
28. Im ———
t—>00 (8[4 + 2)1/3
413 _ g;1/3 -2 1

SOLUTION  lim = lim L —.
t—o00 (8t4 +2)1/3  t—>o0 (8_}_%4)1/3 2

29. el + x
x—>—00 x 4+ 1
SOLUTION Forx < 0, |[x| = —x. Therefore, for alk < 0,
x| +x —x+x _ 0
x+1 x+1 ’
consequently,

x| + x
x—>—00 x + 1

=0.
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4462
30. lim X%
t—>—00 5 — 9e3t

SOLUTION Because

lim % = lim &3 =0,
t—>—00 —>—00

it follows that

4462 440 4
lm ——— = —— = —.
t—>—00 5 — 9e3t 5-0 5

31. & Determine _Iim tam ! x. Explain geometrically.
X o0
SOLUTION  As an angle) increases frond to 7, its tangentx = tan6 approachesoc. Therefore,

. —1 g
lim tan " x = —.
X—>00 2

Geometrically, this means that the graphyo= tar™! x has a horizontal asymptote at= z.
32. Show thatx_lirgl(\/x2 + 1 —x) = 0. Hint: Observe that

1
Vi24l-x= —n—
VxZ4+1+x

SOLUTION Rationalizing the "numerator,” we find

VxZ+1+x
ViZ4l-x=(Vx2+1—x)————
VxZ+1+x

2+ —x? 1

B VxZ 41+ x B «/xz—{—l—l—x'

Thus,

1
i v x2 — = | e —
xll—I;noo( ¥*+1-x) xII—I;noo X2 4+14+x

33. According to theMichaelis—Menten equation(Figure 7), when an enzyme is combined with a substrate of concentsgion
millimolars), the reaction rate (in micromolars/min) is

A
R(s) = £ (A4, K constants)
K+s
a) Show, by computing limR(s), thatA is the limiting reaction rate as the concentraticapproachesoc.
%

(b) Show that the reaction rat(s) attains one-half of the limiting valu¢ whens = K.
(c) For a certain reactiork = 1.25 mM andA = 0.1. For which concentrationis R(s) equal to75% of its limiting value?

Leonor Michaelis Maud Menten
1875-1949 1879-1960

FIGURE 2 Canadian-born biochemist Maud Menten is best known for her fundamental work on enzyme kinetics with German
scientist Leonor Michaelis. She was also an accomplished painter, clarinetist, mountain climber, and master of numerous
languages.

SOLUTION

. . . A
(@ lim R(s) = lim = lim =A
§—>00 s—>o0 K 4+5  s—>00 ] 4 %
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(b) Observe that
AK  AK A
K+K 2K 2

R(K) =

)

have of the limiting value.
(c) By part (a), the limiting value is 0.1, so we need to determine the valuehaft satisfies

0.1s
R(s) = — = 0.075.
1.25+s

Solving this equation for yields

_(1.25)(0.075)
- 0.025

34. Suppose that the average temperature of the eaffitiris= 283 + 3(1 — e~%-937) kelvins, where is the number of years
since2000.

(a) Calculate the long-term average= lim T(¢).
t—>00

=3.75mM.

(b) Atwhat time isT (¢) within one-half a degree of its limiting value?
SOLUTION
(@ L= lim T(t) = lim (283 + 3(1 — e~ %93)) = 286 kelvins.
—>00 —>00
(b) We need to solve the equation
T(t) =283 + 3(1 — e 0:03") = 285 5.

This yields

1
t = ——1In6 ~ 59.73.
0.03

The average temperature of the earth will be within one-half a degree of its limiting value in roughly 2060.
In Exercises 35-42, calculate the limit.
35. lim (v4x* + 9x —2x?)
X—>00
SOLUTION  Write
VAx* 4 9x 4 2x2
Vax4 +9x —2x2 = (Vx4 + 9x — 202 ———
( ) ax* + 9x + 2x2
_ (4x* + 9x) — 4x* _ 9x
VaxFFox +2x2  VAxF Fox 4 2x2°

Thus,
9x
im (Vax4 +9x—2x%) = lim ——— =0
X—>00 X—>00 /4x4+9x+2x2
36. lim (vV9x3 + x —x3/2)
X—>00

SOLUTION  Write

VOx3 ¥ x 4 x3/2
\/9x3+x—x3/2: \/9x3+x—x3/2 -
( ),/9x3 +X+X3/2

_ (9x3 + x) — x3 _ 8x3 + x
Vo3 x4+ x32 V3 x4+ x3/2

Thus,

o 8x3 4+ x
. 3 _ 3/2 — i —
x“—r>noo( ox +x * ) tl—l>moo /9x3 +x +)C3/2 o

37. Jim_(2y3 ~ VX1 2)
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SOLUTION  Write

N R
4x — (x +2) 3x -2

C2Jx AV F2 2x+VxF2
Thus,

3x -2
im QvVx—+vx+2)= lIm —— =
x—>oo(\/— ) x—>002ﬁ+ /x + 2

38. lim (l — ! )
x—oo\x x+42
. 1 1 .
SOLUTION lim [ - — = lim ——— =0
x—>oo\x x+2 x—00 x(x 4 2)
39. xll_r)noo (In(3x + 1) —In(2x + 1))

SOLUTION Because

3x+1

X
In(3 1) —In2 1)=1In
(Gx+ 1D =@y +1) =l >

and
3x+1 3

im = _,
x—00 2x + 1 2

it follows that
. 3
xll_r)noo (InBx+1)—In2x + 1)) =1In >

40. lim_ (In(\/5x2 +2)—1In x)

SOLUTION Because

X
and
2
/5x2 + 2 54+ %
im X222 i ¥ _ /5,
X—>00 X X—00

it follows that

2
. 9
41. lim tan! (x + )
X—>00 9 —x

SOLUTION Because

2 9
X X+ =
li = i X = — = —o0,
x—o00 9—x x—o00 9 _q -1
it follows that
2
. 1 [ x 9
lim tan 1( + ):—z.
Xx—00 9—x 2
. 14+ x
42. lim tan! (L)
X—>00 1—x
SOLUTION Because
. 1+x
lim = -1,
x—>o00 | —x
it follows that
lim tan! ( x) —tan!(—1) = -2,
—Xx 4
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43. & Let P(n) be the perimeter of am-gon inscribed in a unit circle (Figure 3).
(a) Explain, intuitively, why P (n) approache8r asn — oc.
(b) Show thatP(n) = 2nsin(%).
. Cm iy
(c) Combine (a) and (b) to conclude th,fiol(','ﬁ sn(¥) =1

. . sinf
(d) Use this to give another argument tt;at IHﬂne— =1.
—0

YT
N AN AN

n==6 n=9 n=12

FIGURE 3

SOLUTION

(@) Asn — oo, then-gon approaches a circle of radius 1. Therefore, the perimeter afgfom approaches the circumference of
the unit circle ass — oo. Thatis,P(n) — 27 asn — oo.

(b) Each side of the-gon is the third side of an isosceles triangle with equal length sides of length 1 ancBaag?ﬁl between
the equal length sides. The length of each side ofitigen is therefore

2 2 . .
\/12+ 12-2c0s% = \/2(1—003—”) = ,/4sn2£ —2snZ.
n n n n

P(n) =2n sinz.
n

Finally,

(c) Combining parts (a) and (b),
lim P(n) = lim 2nsinZ = 2x.
n—00 n—>00 n
Dividing both sides of this last expression by yields

. n ., m
lim —sin— =1.

n—o00 1 n
(d) Letd = Z.Thenf — 0 asn — oo,
nsm _lsine_sine
e T e
and
. n .. . sinf
lim —sn— = lim — =1.
n—>00 1 n  6—0 6

44. Physicists have observed that Einstein’s theorgpscial relativity reduces to Newtonian mechanics in the limitcas> oo,

wherec is the speed of light. This is illustrated by a stone tossed up vertically from ground level so that it returns to earth one
second later. Using Newton's Laws, we find that the stone’s maximum heightisg/8 meters § = 9.8 m/s?). According to

special relativity, the stone’s mass depends on its velocity divided agd the maximum height is

h(c) = cq[c2/g2 + 1/4—c?/g
Prove that lim&(c) = g/8.
C—>00

SOLUTION  Write

/ / cye? /gt +1/4+c%/g
hic) =c cz/g2+1/4—62/g=(c 62/g2+1/4—c‘2/g)c TR

_ A2/ +1/4) —ct/g? c2/4
Ve[ +1/4+ g P[P+ 1[4+ /g

Thus,

2/4 2/4
lim h(c) = lim <’/ /4 _ 8
c—>00

€0 ¢ /c2/g?2 +1/4+c2/g C2c%/g 8
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Further Insights and Challenges
45. Every limit asx — oo can be rewritten as a one-sided limitras> 0+, wherer = x~1. Settingg(r) = f(r~!), we have
Jim S0 = lim g@)

2

.3
Show that lim X = lim ,
x—>002x2 +5 -0+ 2+ 5¢2

and evaluate using the Quotient Law.
SOLUTION Lett = x~!. Thenx = ¢~1,r — 0+ asx — oo, and

3x2—x_3t_2—t_1 33—t
2x2 45 207245 0 2452

Thus,

3x2—x . 3—t 3

im ———— = lim — = =.
x—>002x2 45 =0+ 24+5t2 2
46. Rewrite the following as one-sided limits as in Exercise 45 and evaluate.

: 3—12x3 :
@ lim —— =" () lim eV~
x—00 4x3 +3x+1 X—>00
. 1 . 1
(©) lim xsin— (d) lim In (i)
X—>00 X X—>00 x—1
SOLUTION

(@) Letr = x~1. Thenx =71, r — 0+ asx — o0, and

3—12x3 3—1273 33 -12
4x3 4+3x +1 43437141 443243
Thus,
. 3—12x3 ) 33— 12 -12
im ———=Im —s—— = — =-3.
x—>004x3 +3x+1 >0+ 4432 4¢3 4

(b) Lets = x~ 1. Thenx = 11, — 04 asx — oo, ande!/* = e’. Thus,

lim e'/* = lim e =% =1.
X—>00 t—0+
(c) Letr = x~ 1. Thenx = t~!, ¢ — 0+ asx — oo, and
sint
xsin— = —-sint = —
t
Thus,
. 1 . sint
lim xsin— = Ilim — =1.
X—>00 X t—>0+ f

(d) Letr = x~ 1. Thenx = t~!, ¢ — 04 asx — oo, and

x+1 P41 14
x—1 11" 1-¢

! |41
im in (22 ) = dim in( L) = in1 =
X—>00 x—1 t—>0+ 1—1t

47. LetG(b) = xli_r)noo(l + bx)l/x for b > 0. InvestigateG (b) numerically and graphically fdr = 0.2, 0.8, 2, 3, 5 (and additional

values if necessary). Then make a conjecture for the valG&kof as a function ob. Draw a graph o = G(b). DoesG (b) appear
to be continuous? We will evaluat®(h) using L'Hopital's Rule in Section 4.5 (see Exercise 69 in Section 4.5).

Thus,

SOLUTION

e h=0.2:

X 5 10 50 100
f(x) | 1.000064| 1.000000| 1.000000| 1.000000
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It appears thatr (0.2) = 1.
e h =028

X 5 10 50 100
7(x) | 1.058324 1.010251| 1.000000| 1.000000

It appears tha6(0.8) = 1.
o h=2:

X 5 10 50 100
7(x) | 2.012347| 2.000195| 2.000000| 2.000000

It appears tha6(2) = 2.
e h=3:

X 5 10 50 100
f(x) | 3.002465| 3.000005| 3.000000| 3.000000

It appears tha6& (3) = 3.
e h=>5:

x 5 10 50 100
f(x) | 5.000320| 5.000000| 5.000000| 5.000000

It appears tha& (5) = 5.

Based on these observations we conjecture@itay = 1if 0 < b < 1 andG(b) = b for b > 1. The graph ofy = G(b) is shown
below; the graph does appear to be continuous.

y
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2.8 Intermediate Value Theorem

Preliminary Questions
1. Prove thatf(x) = x?2 takes on the value 0.5 in the interyél 1].

SOLUTION Observe thaif(x) = x2 is continuous orf0, 1] with £(0) = 0 and f(1) = 1. Becausef(0) < 0.5 < f(1), the
Intermediate Value Theorem guarantees thereci€ 40, 1] such thatf(c) = 0.5.

2. The temperature in Vancouver wasC at 6 AM and rose t®20°C at noon. Which assumption about temperature allows us to
conclude that the temperature wig§ C at some moment of time betweem@ and noon?

SOLUTION We must assume that temperature is a continuous function of time.
3. What is the graphical interpretation of the IVT?

soLuTIioN If fis continuous orja, b], then the horizontal ling = k for everyk betweenf(a) and f(b) intersects the graph of
y = f(x) at least once.

4. Show that the following statement is false by drawing a graph that provides a counterexample:

If f(x) is continuous and has a root a, b], then f(a) and f(b) have opposite signs
SOLUTION

fla)
f(b)
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5. Assume thatf(¢) is continuous orjl, 5] and thatf'(1) = 20, f(5) = 100. Determine whether each of the following statements
is always true, never true, or sometimes true.

(@) f(c) = 3 has a solution witle € [1, 5].

(b) f(c) =75 has a solution witle < [1, 5].

(c) f(c) = 50 has no solution witle € [1, 5].

(d) f(c) = 30 has exactly one solution withe [1, 5].

SOLUTION

(a) This statement is sometimes true.
(b) This statement is always true.

(c) This statement is never true.

(d) This statement is sometimes true.

Exercises
1. Use the IVT to show thaf'(x) = x3 + x takes on the value 9 for somein [1, 2].

SOLUTION Observe thayf (1) = 2 and f(2) = 10. Since f is a polynomial, it is continuous everywhere; in particulaf br2].
Therefore, by the IVT there isae [1, 2] such thatf(c) = 9.

t .
2. Show thatg(r) = ) takes on the value 0.499 for som [0, 1].

SOLUTION g(0) = 0 andg(l) = % Sinceg(¢) is continuous for allk # —1, and sinced < 0.4999 < % the IVT states that
g(t) = 0.4999 for somer betweerD and1.

3. Show thatg(¢) = * tan: takes on the valug for somer in [0, Z].

SOLUTION  g(0) = 0O andg(%) = 71’—2. g(t) is continuous for alt betweer0) andZ, and0 < % < ’1’—2; therefore, by the IVT,

there is & € [0, Z] such thatg(c) = 1.
2
4. Show thatf(x) = 7x— takes on the value 0.4.
x'+1
SOLUTION  f(0) =0 < 0.4. f(1) = % > 0.4. f(x) is continuous at all points wherex # —1, thereforef(x) = 0.4 for some
x betweerD and]1.
5. Show that cos = x has a solution in the interv§0, 1]. Hint: Show thatf(x) = x — cosx has a zero if0, 1].

SOLUTION Let f(x) = x — cosx. Observe thaff is continuous withf(0) = —1 and f(1) = 1 — cosl ~ 0.46. Therefore, by
the IVT there is & € [0, 1] such thatf(c) = ¢ — cosc = 0. Thusc = cosc and hence the equation cos= x has a solutior in
[0, 1].

6. Use the IVT to find an interval of Iengt%u containing a root off(x) = x3 4+ 2x + 1.

SOLUTION Let f(x) = x3 + 2x + 1. Observe thaff(—1) = —2 and f(0) = 1. Sincef is continuous, we may conclude by the
IVT that f has a root if—1, 0]. Now, f(—% = —% so f(—%) and £(0) are of opposite sign. Therefore, the IVT guarantees that
f has aroot off—3. 0.

In Exercises 7-16, prove using the IVT.

7. /¢ + +/c +2 = 3 has a solution.
SOLUTION Let f(x) = +/x + /X + 2 — 3. Note thatf is continuous orﬁ%, 2] with £(3) = /4 +/3 -3 =—-landf(2) =
V2 —1 =~ 0.41. Therefore, by the IVT there isac [%,2] such thatf(c) = /c + Ve +2—-3=0.Thus\/c + /c +2=3
and hence the equatiofx + +/x + 2 = 3 has a solutior in [% 2].

8. For all integers:, sinnx = cosx for somex € [0, r].

SOLUTION For each integer, let f(x) = sinnx — cosx. Observe thatf is continuous withf(0) = —1 and f(x) = 1.
Therefore, by the IVT there is @ € [0, =] such thatf(c) = sinnc — cosc = 0. Thus simc = cosc and hence the equation
sinnx = cosx has a solutior in the interval[0, r].

9. /2 exists.Hint: Considerf(x) = x2.

SOLUTION Let f(x) = x2. Observe thatf is continuous withf(1) = 1 and f(2) = 4. Therefore, by the IVT there is a
¢ € [1,2] such thatf(c) = ¢? = 2. This proves the existence ef2, a number whose square is 2.

10. A positive number has amth root for all positive integers.
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SOLUTION If ¢ = 1, then ¥/c = 1. Now, suppose # 1. Let f(x) = x" — ¢, and leth = max1,c}. Then, ifc > 1,
b" =" > c,andifc < 1,b" =1 > ¢. Sob™ > c. Now observe thaf'(0) = —c < 0 and f(b) = b" — ¢ > 0. Sincef is
continuous orf0, b], by the intermediate value theorem, there is sahe[0, 5] such thatf (d) = 0. We can refer tal as /c.

11. For all positive integer, cosx = x* has a solution.

SOLUTION For each positive integeék, let f(x) = xk — cosx. Observe thatf is continuous or[O, %] with f(0) = —1 and

f3) = (%)k > 0. Therefore, by the IVT there isac [0, %] such thatf(c) = ¢k — cogc) = 0. Thus cos = ¢¥ and hence
the equation cos = x¥ has a solutior in the interval[0, % ].
12. 2* = bx has a solution ib > 2.

SOLUTION Let f(x) = 2¥ — bx. Observe thatis continuous o1f0, 1] with f(0) = 1 > 0and f(1) = 2 — b < 0. Therefore, by
the IVT, there is & € [0, 1] such thatf(c) = 2¢ —bc = 0.

13. 2* + 3* = 4* has a solution.

SOLUTION Let f(x) = 2* + 3* — 4*. Observe thatis continuous o0, 2] with f(0) =1 > 0 and f(2) = —3 < 0. Therefore,
by the IVT, there is & € (0, 2) such thatf(c) = 2 + 3¢ —4¢ = 0.
14. cosx = cos™! x has a solution ir0, 1).

SOLUTION Let f(x) = cosx — cos ™! x. Observe thatis continuous o0, 1] with £(0) =1 — Z <0andf(1) =cosl —0 ~
0.54 > 0. Therefore, by the IVT, there is@e (0, 1) such thatf(c) = cosc —cos ™! ¢ = 0.

15. e* + Inx = 0 has a solution.

SOLUTION Let f(x) = ¢* + Inx. Observe thay is continuous offe=2, 1] with f(e=2) = ¢¢ > —2 < 0and (1) = e > 0.
Therefore, by the IVT, there isac (e~2,1) C (0, 1) such thatf(c) = ¢ +Inc = 0.

16. tan! x = cos™! x has a solution.

SOLUTION  Let f(x) = tan~! x — cos™! x. Observe thayf is continuous orf0, 1] with £(0) =tam !0 —cos10=-%Z <0
and f(1) =tan ! 1 —cos! 1 = Z > 0. Therefore, by the IVT, there is@e (0, 1) such thatf(c) = tan ! ¢ —cos™! ¢ = 0.

17. Carry out three steps of the Bisection Method fifrr) = 2* — x3 as follows:
(@) Show thatf'(x) has a zero i, 1.5].

(b) Show thatf'(x) has a zero iifil.25, 1.5].

(c) Determine whethefl.25, 1.375] or [1.375, 1.5] contains a zero.

SOLUTION Note thatf(x) is continuous for alk.

(@ f(1) =1, f(1.5) =21 —(1.5)3 < 3-3.375 < 0. Hence,f(x) = 0 for somex betweenl and1.5.
(b) f(1.25) ~ 0.4253 > 0 and f(1.5) < 0. Hence,f(x) = 0 for somex betweenl.25 and1.5.

(c) f(1.375) ~ —0.0059. Hence, f(x) = 0 for somex between 1.25 and 1.375.

18. Figure 1 shows thaf (x) = x3 — 8x — 1 has a root in the intervgR.75, 3]. Apply the Bisection Method twice to find an
interval of Iength% containing this root.

A~

1 2/3

FIGURE 1 Graph ofy = x3 —8x — 1.

SOLUTION Let f(x) = x3 — 8x — 1. Observe thatf is continuous withf(2.75) = —2.203125 and f(3) = 2. Therefore,
by the IVT there is & € [2.75, 3] such thatf(c) = 0. The midpoint of the interval2.75, 3] is 2.875 andf(2.875) = —0.236.
Hence, f(x) = 0 for somex between 2.875 and 3. The midpoint of the intef2za875, 3] is 2.9375 andf(2.9375) = 0.84. Thus,
f(x) = 0 for somex between 2.875 and 2.9375.

19. Find an interval of Iengtl% in[1,2] containing a root of the equatior! 4 3x — 10 = 0.

SOLUTION Let f(x) = x7 4+ 3x — 10. Observe thay is continuous withf (1) = —6 and f(2) = 124. Therefore, by the IVT
there is ac € [1, 2] such thatf(c) = 0. f(1.5) ~ 11.59 > 0, so f(c) = 0 for somec € [1,1.5]. f(1.25) ~ —1.48 < 0, and so
f(c) = 0forsomec € [1.25, 1.5]. This means thdt .25, 1.5] is an interval of lengtt®.25 containing a root off (x).

20. Show that tah# — 8tar? @ + 17tand — 8 = 0 has a root if0.5,0.6]. Apply the Bisection Method twice to find an interval
of length 0.025 containing this root.
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SOLUTION Let f(x) = tar® § — 8tar? 6 + 17tand — 8. Since f(0.5) = —0.937387 < 0 and f(0.6) = 0.206186 > 0, we
conclude thatf(x) = 0 has a root if0.5, 0.6]. Since £(0.55) = —0.35393 < 0 and f(0.6) > 0, we can conclude thaf(x) = 0
has a root irf0.55, 0.6]. Since f(0.575) = —0.0707752 < 0, we can conclude thaf has a root 01j0.575, 0.6].

In Exercises 21-24, draw the graph of a functiftx) on [0, 4] with the given property.

21. Jump discontinuity at = 2 and does not satisfy the conclusion of the IVT.

SOLUTION The function graphed below has a jump discontinuity at 2. Note that whilef(0) = 2 and f(4) = 4, there is no
pointc in the interval[0, 4] such thatf'(c) = 3. Accordingly, the conclusion of the IVT isot satisfied.

y

14 -—
3]
24—
11
. X
1 2 3 4

22. Jump discontinuity ak = 2 and satisfies the conclusion of the IVT fin4].

SOLUTION The function graphed below has a jump discontinuity at 2. Note that for every valug/ betweenf'(0) = 2 and
f(4) = 4, thereis a pointc in the interval[0, 4] such thatf (c) = M. Accordingly, the conclusion of the IViE satisfied.

4

2 4

23. Infinite one-sided limits at = 2 and does not satisfy the conclusion of the IVT.

SOLUTION  The function graphed below has infinite one-sided limits at 2. Note that whilef(0) = 2 and f(4) = 4, there is
no pointc in the interval[0, 4] such thatf'(c) = 3. Accordingly, the conclusion of the IVT isot satisfied.

y
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44 °

3]

2

1
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24. Infinite one-sided limits at = 2 and satisfies the conclusion of the IVT fih4].

SOLUTION The function graphed below has infinite one-sided limits at 2. Note that for every valud/ betweenf(0) = 0
and f'(4) = 4, thereis a pointc in the interval[0, 4] such thatf(c) = M. Accordingly, the conclusion of the IViE satisfied.

N
.

2 4
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25. & Can Corollary 2 be applied tf(x) = x~! on[—1, 1]? Doesf (x) have any roots?

SOLUTION No, becausef(x) = x~! is not continuous offi—1, 1]. Even thoughf(—1) = —1 < 0 and f(1) = 1 > 0, the
function has no roots betwean= —1 andx = 1. In fact, this function has no roots at all.

Further Insights and Challenges

26. Take any map and draw a circle on it anywhere (Figure 2). Prove that at any moment in time there exists a pair of diametrically
opposite pointsA and B on that circle corresponding to locations where the temperatures at that moment arélgquiet 6 be
an angular coordinate along the circle and/iéf) be the difference in temperatures at the locations correspondéthgnd6 + .

FIGURE 2 f(6) is the difference between the temperatured ahd B.

SOLUTION Say the circle has (fixed but arbitrary) radiugnd use polar coordinates with the pole at the center of the circle.
For0 < 0 < 2x, let T(0) be the temperature at the pointcosf, r sinf). We assume this temperature varies continuously. For
0 <6 < &, definef as the differencef(6) = T(0) — T (6 + n). Then f is continuous o1f0, |. There are three cases.

e If f(0) =T(0)—T(w) =0,thenT(0) = T(x) and we have found a pair of diametrically opposite points on the circle at
which the temperatures are equal.

e If £(0) =T(0)—T(x) >0, then
f@)=Tw)—TR2r)=T(x)—-T(0) <O0.

[Note that the angles 0 arx correspond to the same poift, y) = (,0).] Since f is continuous orf0, ], we have by the
IVT that f(c) = T(c) — T(c + ) = 0 for somec € [0, 7]. Accordingly,T (c¢) = T (¢ + m) and we have again found a pair
of diametrically opposite points on the circle at which the temperatures are equal.

e If f(0)=T(0)—T(x)<O0,then

f@)=Tw)—TQR2nr)=T(x)—T(0) > 0.

Since f is continuous on0, 7], we have by the IVT thaf'(d) = T(d) — T(d + =) = 0 for somed € [0, =]. Accordingly,
T(d) = T(d + =) and once more we have found a pair of diametrically opposite points on the circle at which the temperatures
are equal.

CONCLUSION: There is always a pair of diametrically opposite points on the circle at which the temperatures are equal.

27. & Show that if f(x) is continuous an@ < f(x) < 1for0 < x < 1, then f(c) = ¢ for somec in [0, 1] (Figure 3).

y
1

c 1
FIGURE 3 A function satisfying) < f(x) <1for0<x <.

SOLUTION If f(0) = 0, the proof is done witkh = 0. We may assume thgt(0) > 0. Letg(x) = f(x)—x.g(0) = f(0)—0 =
f(0) > 0. Since f(x) is continuous, the Rule of Differences dictates that) is continuous. We need to prove thgic) = 0 for
somec € [0, 1]. Sincef(1) <1, g(1) = f(1) — 1 < 0. If g(1) = 0, the proof is done witls = 1, so let's assume that(1) < 0.
We now have a continuous functigr{x) on the interval0, 1] such thatg(0) > 0 andg(1) < 0. From the IVT, there must be
somec € [0, 1] so thatg(c) = 0, so f(¢) —c = 0and sof(c) = c.
This is a simple case of a very general, useful, and beautiful theorem callBdoineer fixed point theorem.
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28. Use the IVT to show that iff (x) is continuous and one-to-one on an interjalb], then f(x) is either an increasing or a
decreasing function.

SOLUTION Let f(x) be a continuous, one-to-one function on the intef¥ab]. Suppose for sake of contradiction thétx) is
neither increasing nor decreasing[and]. Now, f(x) cannot be constant for that would contradict the condition fiab is one-
to-one. It follows that somewhere da, ], f(x) must transition from increasing to decreasing or from decreasing to increasing.
To be specific, supposg(x) is increasing forx; < x < x; and decreasing far, < x < x3. Let k be any number between
max{ f(x1), f(x3)} and f(x,). Becausef (x) is continuous, the IVT guarantees there exists & (x, x») such thatf(cy) = k;
moreover, there exists @ € (x2,x3) such thatf(c;) = k. However, this contradicts the condition thAfx) is one-to-one.

A similar analysis for the case whefi(x) is decreasing fox; < x < x, and increasing fox, < x < x3 again leads to a
contradiction. Thereforef (x) must either be increasing or decreasindarb].

29. & Ham Sandwich TheoremFigure 4(A) shows a slice of ham. Prove that for any argl@ < 6 < =), it is possible
to cut the slice in half with a cut of inclin@. Hint: The lines of inclinatiory are given by the equations= (tané)x + b, where
b varies from—oo to co. Each such line divides the slice into two pieces (one of which may be empty) (bgtbe the amount
of ham to the left of the line minus the amount to the right, anddléte the total area of the ham. Show thb) = —A if b is
sufficiently large and1(b) = A if b is sufficiently negative. Then use the IVT. This work®)it£ 0 or Z. If 6 = 0, defineA(b)
as the amount of ham above the line= » minus the amount below. How can you modify the argument to work vthenZ- (in

which case tafl = c0)?
F/-J L(0) = L(7)
9 A

X X
(A) Cutting a slice of ham (B) A slice of ham on top
atan angle . of a slice of bread.
FIGURE 4

SOLUTION  Let6 be such thaf # Z. For anyb, consider the lind.(f) drawn at angl@ to thex axis starting at0, »). This line
has formulay = (tanf)x + b. Let A(b) be the amount of ham above the line minus that below the line.
Let A > 0 be the area of the ham. We have to accept the following (reasonable) assumptions:

e For low enoughb = by, the lineL(0) lies entirely below the ham, so thd{by) = A — 0 = A.
¢ For high enouglb, the lineL(0) lies entirely above the ham, so th&th;) = 0— 4 = —A.
e A(b) is continuous as a function éf

Under these assumptions, we sé@) is a continuous function satisfying(bg) > 0 and A(b;1) < 0 for someby < b;. By the
IVT, A(b) = 0 for someb € [bo, b1].

Suppose thal = Z. Let the lineL(c) be the vertical line througtr, 0) (x = ¢). Let A(c) be the area of ham to the left af(c)
minus that to the right of.(c). SinceL(0) lies entirely to the left of the ham(0) = 0 — A = —A. For somec = ¢ sufficiently
large, L(c) lies entirely to the right of the ham, so thdtc;) = A4 — 0 = A. HenceA(c) is a continuous function af such that
A(0) < 0andA(cy) > 0. By the IVT, there is some € [0, ¢1] such thatd(c) = 0.

30. & Figure 4(B) shows a slice of ham on a piece of bread. Provettlsgpossible to slice this open-faced sandwich so that
each part has equal amounts of ham and brdad: By Exercise 29, for ald < 6 < n there is a linel.(#) of incline 8 (which we
assume is unique) that divides the ham into two equal piecesB({&tdenote the amount of bread to the left of (or abok¢y)

minus the amount to the right (or below). Notice tatr) and L(0) are the same line, bl(7x) = —B(0) since left and right

get interchanged as the angle moves fi@to 7. Assume thatB(0) is continuous and apply the IVT. (By a further extension of

this argument, one can prove the full “Ham Sandwich Theorem,” which states that if you allow the knife to cut at a slant, then it is
possible to cut a sandwich consisting of a slice of ham and two slices of bread so that all three layers are divided in half.)

SOLUTION For each angl®, 0 < 6 < m, let L(0) be the line at anglé to the x-axis that slices the ham exactly in half, as
shown in Figure 4. LeL (0) = L(x) be the horizontal line cutting the ham in half, also as shown fFamd L (9) thus defined, let
B(6) = the amount of bread to the left @f(9) minus that to the right of.(6).

To understand this argument, one must understand what we mean by “to the left” or “to the right”. Here, we mean to the left ol
right of the line as viewed in the directigh Imagine you are walking along the line in directiéridirectly right if 8 = 0, directly
leftif 6 = 7, etc).

We will further accept the fact tha is continuous as a function éf which seems intuitively obvious. We need to prove that
B(c) = 0 for some angle.

SinceL(0) and L(x) are drawn in opposite directiol,(0) = —B(x). If B(0) > 0, we apply the IVT or{0, =] with B(0) > 0,
B(w) < 0, and B continuous or{0, z]; by IVT, B(c¢) = 0 for somec € [0, 7]. On the other hand, iB(0) < 0, then we apply the
IVT with B(0) < 0 andB(x) > 0. If B(0) = 0, we are also dond,(0) is the appropriate line.
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2.9 The Formal Definition of a Limit

Preliminary Questions

1. Given that Iin(} cosx = 1, which of the following statements is true?
x—

(a) If |cosx — 1] is very small, therx is close ta0.

(b) There is are > 0 such thafx| < 1072 if 0 < |cosx — 1| < e.
(c) Thereis & > 0 such thafcosx — 1| < 1072 if 0 < |x| < 6.
(d) Thereis & > 0 such thafcosx| < 1072 if 0 < |x — 1| < §.

SOLUTION The true statement {&): There is & > 0 such thajcosx — 1| < 1072 if 0 < |x| < §.

2. Suppose itis known that for a giverands, | f(x) — 2| < € if 0 < |x — 3] < §. Which of the following statements must also be
true?

@ |f(x)—2] <eifO<|x—3] <28
b) |f(x)—2] <2eif0<|x—3]<$§

€. $
(C) |f(x)_2|<§|f0<|x—3|<5
(d) |f(x)—2|<eif0<|x—3|<g

SOLUTION  Statementg¢b) and(d) are true.

Exercises
1. Based on the information conveyed in Figure 1(A), find valued. of, and§ > 0 such that the following statement holds:

|f(x) = L| < eif x| <.
y=f
b / 104
10 1
4 b

1 9.8
357

01 0.1 29
(A) ®)
FIGURE 1

SOLUTION We see-0.1 < x < 0.1 forces3.5 < f(x) < 4.8. Rewritten, this means that — 0] < 0.1 implies that] f(x) — 4| <
0.8. Replacing numbers where appropriate in the definition of the |imit¢| < § implies| f(x) — L| < ¢, we getL = 4,¢ = 0.8,
¢ =0,ands =0.1.

2. Based on the information conveyed in Figure 1(B), find values, df, ¢, ands > 0 such that the following statement holds:
[f(x)— L] <eif 0 <|x—c| <3$.

SOLUTION From the shaded region in the graph, we can seedtBat f(x) < 10.4 wheneverR.9 < x < 3.1. Rewriting these
double inequalities as absolute value inequalities, we fiet) — 10| < 0.4 wheneverd) < |x — 3| < 0.1. Replacing numbers
where appropriate in the definition of the linfit< |x — ¢| < § implies|f(x) — L| < €, we getL = 10,¢ = 0.4, ¢ = 3, and
§=0.1.

3. Consider lim f(x), wheref(x) = 8x + 3.
x—>4

(@) Show that| f'(x) — 35| = 8|x — 4.

(b) Show that for any > 0, | f(x) — 35| < €if 0 < |x — 4| < §, where§ = g. Explain how this proves rigorously that
Iim4 f(x) =35.

X—>

SOLUTION
(@) |f(x)—35] =|8x +3—35 = |8x — 32| = |8(x —4)| = 8 |x — 4|. (Remember that the last step is justified bec&use0).
(b) Lete > 0. Lets = ¢/8 and supposé < |x — 4| < §. By part(a), | f(x) — 35| = 8|x — 4| < 85. Substitutingd = ¢/8, we see
| f(x) —35] < 8¢/8 = €. We see that, for any > 0, we found an appropriai®so that0 < |x — 4| < § implies| f(x) — 35| < e.
Hence I_|)r2 f(x) = 35.

X
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4. Considerxinz] f(x), where f(x) = 4x — 1.
(a) Showthat f(x) —7| <48if 0 < |x —2] <é.
(b) Find a$ such that
| f(x)—17] <0.01 if 0<|x—2|<$§
(c) Prove rigorously that limf(x) = 7.
x—>2

SOLUTION
(@) If 0 < |x —2| <§, then|(4x — 1) — 7| = 4|x — 2| < 44.

(b) If 0 < |x —2| <& =0.0025, then|(4x — 1) — 7| = 4|x — 2| < 45 = 0.01.

(c) Lete > 0 be given. Then whenevér < |x — 2| < § = €/4, we have|(4x — 1) — 7| = 4|x — 2| < 4§ = €. Sincee was
arbitrary, we conclude the;lct_)lizr(ﬂx -1 =7.

5. Consider limx2 = 4 (refer to Example 2).
x—>2

(@) Show thatx2 — 4| < 0.05if 0 < |x —2| < 0.01.
(b) Show thatx2 — 4| < 0.0009 if 0 < |x — 2| < 0.0002.
(c) Find a value o such thafx2 — 4 is less thanl 0 if

0<|x—2] <8é.
SOLUTION
(@) If 0 < |x—2| <8 =0.01, then|x| < 3and|x? — 4| = |x — 2||x + 2| < |x — 2| (|x| + 2) < 5]x — 2| < 0.05.
(b) If 0 < |x — 2| < & = 0.0002, then|x| < 2.0002 and

’xz — 4’ — x = 2[[x + 2| < |x — 2| (Jx| + 2) < 4.0002|x — 2| < 0.00080004 < 0.0009.

(c) Note that]x2 - 4] = |(x +2)(x —2)| < |x + 2| |x —2|. Since|x — 2| can get arbitrarily small, we can require— 2| < 1
so thatl < x < 3. This ensures thgix + 2| is at most 5. Now we know thabx2 — 4\ < 5|x —2|. Let§ = 10~5. Then, if
0 < |x—2| <8 weget|x? —4| <5]x —2| <5x 107> < 10~* as desired.
6. With regard to the limit limx2 = 25,
x—>5
(@) Show thax? — 25| < 11|x — 5| if 4 < x < 6. Hint: Write |x2 — 25| = |x + 5| - [x — 5].
(b) Find a8 such thafx? — 25| < 1073 if 0 < |x — 5] < 6.
. . . . . 2 . .
(c) Give arigorous proof of the limit by showing that* — 25| < € if 0 < |x — 5| < §, where$ is the smaller off and 1.
SOLUTION
(@ If4<x<6,thenjx =5 <§=1 and|x2 —25| =|x=5|lx +5 < |x=5(x]+5) < 11|x = 3]
(b) 10 < |x—5 <8=201 thenx < 6and|x? — 25| = [x — 5[[x + 5] < |[x — 5| (Jx] + 5) < 11|x — 5| < 0.001.
(c) Let0 < |x —5] <8 =min{l, f}. Sinces < 1, |x — 5| < § < 1 implies4 < x < 6. Specifically,x < 6 and

‘xz —25‘ = |x—5]x +5/ < [x =5 (x| + 5) < [x = 5](6 + 5) = I1]x — 3.
Sinces is also less thams/11, we can concludél|x — 5| < 11(¢/11) = ¢, thus completing the rigorous proof tHaf — 25| < ¢
if [x —5] <é.
7. Refer to Example 3 to find a value &f> 0 such that

11 .
’_——‘<10—4 if  O0<|x—3<$
x 3

SOLUTION The Example shows that for amy> 0 we have

——§‘<e ifo<|x—3<$§

whereé is the smaller of the numbetg andl. In our case, we may take= 6 x 1074,

8. Use Figure 2 to find a value 6f> 0 such that the following statement holcF$/x2 — %| <eif 0 < |x—2| < §fore =0.03.
Then find a value of that works fore = 0.01.
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0.20

0.15 1 x
0.10 1

0.05 1

1.9 2.0 2.1
FIGURE 2

SOLUTION From Figure 2, we see thar2 < xiz < 0.28 for 1.9 < x < 2.1. Rewriting these expressions using absolute values
yields

! ! < 0.03
x2 4 '

for0 < |x — 2| < 0.1. Thus, fore = 0.03, we may takef = 0.1. Additionally, we see thal.24 < xlz < 0.26 for 1.96 < x < 2.04.
Rewriting these expressions using absolute values yields

1 1

273 < 0.01

for 0 < |x —2| < 0.04. Thus, fore = 0.01, we may take = 0.04.

9. |GU| Plot f(x) = +~/2x — 1 together with the horizontal lines = 2.9 andy = 3.1. Use this plot to find a value & > 0
such thaf+/2x — 1 — 3| < 0.1 if |x — 5] < 6.

SOLUTION From the plot below, we see that= 0.25 will guarantee thatv/2x — 1 — 3| < 0.1 wheneveljx — 5| < 4.

3.1 4

A

V
LA

X
46 48 5 52 54

10. Plot f(x) = tanx together with the horizontal lings = 0.99 andy = 1.01. Use this plot to find a value &f > 0 such
that|tanx — 1] < 0.01if |x — F| < 6.

SOLUTION  From the plot below, we see théit= 0.005 will guarantee thaltanx — 1| < 0.01 wheneverx — | < 4.

y
1.02 »
//
1.01 >
e
1 2t
7
//
0.99
A
7
098}
X
0.775 0.78 0.785 0.79 0.795

X X

S -1

11. The numbee has the following property: Iigne— = 1. Use aplot off(x) = ¢
x—> X

that| f(x) — 1| < 0.01if [x — 1] < .

SOLUTION From the plot below, we see th&t= 0.02 will guarantee that

to find a value of > 0 such

—1| <0.01

wheneverx| < §.

1.02 + A
1.01 *
1.00 4 e
0.99 -
098 L7
0.97

X
-0.04 -0.02 0 0.02 0.04
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12. Let f(x) = —
x% 41
0< ’x - %‘ < §. Repeat foe = 0.2 and 0.1.

and ¢ = 0.5. Using a plot of f(x), find a value of§ > 0 such that‘f(x) — 1?6 < ¢ for

SOLUTION From the plot below, we see th&t= 0.18 will guarantee thatf (x) — %| < 0.5 wheneve0 < |x — %| < 4.

<

\\

MON Wowww
roowh oo

0.2 030405 06 0.7

Whene = 0.2, we see that = 0.075 will guaranteg| f(x) — %| < € whenevel < |x — %| < § (examine the plot below at the
left); whene = 0.1, § = 0.035 will guaranted f(x) — %| < € wheneve < |x — %| < § (examine the plot below at the right).

N N
34 ] 33 ¢
3.3¢ N 3.257 N
AN N
3.2t N 3.21 NN
\\\ \\\
3.1t N 3.15¢ N
3 N 3.1 S
2.9 3.05

X X
04 045 05 055 0.6 0.46 0.48 0.5 0.52 0.54

13. Consider lim l
x—>2 X

(a) Show thatiflx —2| < 1, then

(b) Leté be the smaller of 1 angk. Prove:

(¢) Find as >0suchthat(§ —%‘ <0.01if0<|x—2| <8.

. 1 1
(d) Prove rigorously that lim— = —.
xX—>2 X 2

SOLUTION

. . . . 1
(a) Since|x —2| < 1, itfollows thatl < x < 3, in particular thatr > 1. Becausex > 1, then— < 1 and
X

[x=2] 1
= < =|x =2
2x 2

x 2 2x

1 1‘_‘2—x

(b) Let§ = min{l,2¢} and suppose théit< |x — 2| < §. Then by part (a) we have

1 1 1
<zlx-2[< < <-2e=¢€.
2 2 2

1
(c) Choose$ = 0.02. Then|— — 5
X
(d) Lete > 0 be given. Then whenevér< |x — 2| < § = min{l, 2¢}, we have

1
< 58 = 0.01 by part (b).

. . 1 1
Sincee was arbitrary, we conclude that lim = —.
x—2 X 2

14. Consider Iinl1 Vx4 3.
x—
(a) Showthafv/x +3—-2| < %|x — 1]if |x — 1| < 4. Hint: Multiply the inequality by]+/x + 3 + 2| and observe thgt/x + 3 +
2| > 2.
(b) Findé > 0 such thai/x +3 —2| < 107* for0 < |x — 1| < §.
(c) Prove rigorously that the limit is equal to 2.
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SOLUTION
(@) |x — 1| < 4implies that-3 < x < 5. Sincex > —3, then+/x + 3 is defined (and positive), whence

VX+3-2) (WVx+3+2)|  |x—1] =l
1 (Vx+3+2)| Jr+3+2 2

(b) Choose&l = 0.0002. Then provided) < |x — 1| < §, we havex > —3 and therefore
x—1] &

Vit- = [{

|[Vx+3-2|< 5— <5 = 0.0001
by part (a).
(c) Lete > 0 be given. Then whenevér< |x — 1| < § = min{2¢, 4}, we havex > —3 and thus
+3-2 +34+2 -1 2
Nesmmica ) v A e |
1 (Vx+3+2)| Vx+3+2 2

Sincee was arbitrary, we conclude that Ilim/x +3=2.
x—
15. & Let f(x) = sinx. Using a calculator, we find:
T T b/
f (Z —0.1) ~0.633, f (Z> ~ 0707, f (Z + 0.1) ~ 0.774
Use these values and the fact thfdi) is increasing 0|{0, %] to justify the statement

‘f(x)—f(%)‘ <008 if O0< ‘x—%’ <0.1

Then draw a figure like Figure 3 to illustrate this statement.

SOLUTION Since f(x) is increasing on the interval, the thrg¢€x) values tell us thab.633 < f(x) < 0.774 for all x between
Z —0.1 and Z 4 0.1. We may subtractf(Z) from the inequality forf(x). This show that, forf — 0.1 < x < ¥ 4 0.1,

0.633 — f(§) < f(x)— f(§) <0.774 — f(§). This means that, i® < [x — Z| < 0.1, then0.633 — 0.707 < f(x) — f(§) <

0.774 —0.707, s0—0.074 < f(x) — f(¥) < 0.067. Then—0.08 < f(x) — f(%) < 0.08 follows from this, sd) < |[x — Z| < 0.1

implies| f(x) — f(F)| < 0.08. The figure below illustrates this.

y
14
0.8+
0.6+
0.4+
0.2+

X
025 05 075 1 125 15

16. Adapt the argument in Example 1 to prove rigorously Echgtc(m + b) = ac + b, wherea, b, ¢ are arbitrary.

SOLUTION | f(x) — (ac + b)| = |(ax + b) — (ac + b)| = |a(x —¢)| = |a| |x — ¢|. This says the gap i&| times as large as
|[x —c|. Lete > 0. Letd = €/|al. If |x —c| < 8§, we get| f(x) — (ac + b)| = |a| |x —c| < |ale/|a| = €, which is what we had to
prove.

17. Adapt the argument in Example 2 to prove rigorously txh_a)tC Jith= ¢2 forall c.
SOLUTION To relate the gap tpr — c|, we take

‘xz—cz‘ =|lx+c)x—c)=|x+c||x—c|.

We choosé in two steps. First, since we are requirippg— c| to be small, we requiré < |c|, so thatx lies betweer) and2c. This

. €
means thatx + c| < 3|c|, so|x — c||x + ¢| < 3|c|§. Next, we require that < 3l S0
c
€

xX—=cl|lx+c| <
b —ellx +el < 3

3lc] =€,

and we are done.
Therefore, giver > 0, we let

. €
8= m|n{|c|, ﬁ} .
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Then, for|x — ¢| < §, we have
€

2
= =€
= 3]

Ix2—c x —c||x +c| < 3lel§ < 3le|
18. Adapt the argument in Example 3 to prove rigorously txh_a}c kmt = % forallc # 0.

SOLUTION  Suppose that # 0. To relate the gap tpc — ¢|, we find:

1 c—Xx xX—c
x—l__:‘ ‘:I |
c

cXxX

lex]

Since|x — c| is required to be small, we may assume from the outsef thatc| < |c|/2, so thatx is betweer|c|/2 and3]|c]|/2.
This forcescx| > |c|/2, from which

It § < e(lsl),

Therefore, giver > 0 we let

(%)

We have shown that =1 — 1| < €if 0 < [x —c| < 6.

In Exercises 19-24, use the formal definition of the limit to prove the statement rigorously.

x—>4
2
SOLUTION Lete > 0 be given. We boundl,/x — 2| by multiplying Vx4 .
VX +2

L = M

We can assumé < 1, so thatjx — 4| < 1, and hence/x + 2 > +/3 + 2 > 3. This gives us

WE—2l =4

1 1

— 4=

ﬁ+2‘ <43
Lets = min(1, 3¢). If [x —4| < 6,

1

thus proving the limit rigorously.
20. lim 3x%2 +x) =4
x—>1

SOLUTION Lete > 0 be given. We boun¢l(3x2 +x)— 4| using quadratic factoring.
‘(3x2 +x) —4’ - ‘3)(2 Fx —4’ = |Gx +H(x =) = |x — 1|]3x +4|.
Let§ = min(1, {5). Sinces < 1, we get|3x + 4| < 10, so that
‘(3x2 +x) —4’ = |x — 1|]3x + 4] < 10jx — 1.
Sinces < {5, we get
2 €
‘(3x —|—x)—4‘ <10 —1] < 105 =e.

21. lim x3 =1
x—1
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SOLUTION Lete > 0 be given. We boun¢x3 — 1] by factoring the difference of cubes:
’x3—1‘ = ’(xz—{—x—{— 1)(x—1)‘ =|x—1] ’xz—{—x—{— 1’.

Let§ = min(l, %), and assuméx — 1| < 8. Sinced < 1,0 < x < 2. Sincex? + x + 1 increases as increases forx > 0,
xX24+x+4+1<7for0<x <2, andso

‘x3—1‘ :|x—1|‘x2+x+1‘ <7|x—1] <7; =€
and the limit is rigorously proven.
22. lim (x2+x3 =0
x—0
SOLUTION Lete > 0 be given. Now,
(2% + %) =0 = |x| |x| [x + 1.

Leté = min(1, %e), and supposeéx| < 4. Sinced < 1, |x| < 1,s0—1 < x < 1. This meansl + x| < 2, so that|x||x + 1] < 2.
Thus,

1
(x2 +x3) = 0] = |x||x||x + 1] < 2|x] <2 e=e
and the limit is rigorously proven.
. 1
23. lim x72 = -

x—2 4

SOLUTION Lete > 0 be given. First, we bound—2 — %:

Lets = min(l, %e), and supposgx — 2| < 8. Sinced < 1, |x —2| < 1, s01 < x < 3. This means thatx? > 4 and|2 + x| < 5,
24+ x

4x2

4 —x2
4x2

24 x
4x2

x 72—

1
- =12 —x|
4

so that

< 7. We get:

24+ x

5 4
—— [x =2| < =-—-e=c¢.
4x 4 5

1
x_z——’ = |2—x|‘
4

< -
4
and the limit is rigorously proven.

1
24, lim xsin— =0
x—0 X

SOLUTION Lete > 0 be given. Let = ¢, and assumgx — 0] = |x| < §. We boundx sin%.

!
xsin——0| = |x|
x

1
sm—‘ <l|x|<d=e.
X

25. Let f(x) = |x_| Prove rigorously that Iignf(x) does not existHint: Show that for any_, there always exists somesuch
X x—
that|x| < 6 but| f(x) — L| > % no matter how sma is taken.

SOLUTION Let L be any real number. Lét> 0 be any small positive number. Let= % which satisfie$x| < §, and f(x) = 1.
We consider two cases:

o (|f(x)—L| > 1):we are done.
 (If(x)—L| < 1): Thismeans, < L < 3.Inthiscase, lex = —$. f(x) = —1,and s03 < L — f(x).

In either case, there exists arsuch thafx| < % but|f(x)—L| > %

26. Prove rigorously that limx| = 0.
x—0
SOLUTION Lete > 0 be given and také = €. Then, whenevelx| < §,
[[x|] = 0] = |x| <6 =€,

thus proving the limit rigorously.
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27. Let f(x) = min(x, x2), where mir{a, b) is the minimum ofz andb. Prove rigorously that Iirlnf(x) =1
X—>

SOLUTION Lete > 0 and lets = min(l, %). Then, whenevefx — 1| < ¢, it follows that0 < x < 2. If 1 < x < 2, then
min(x, x2) = x and

1f()—1] =[x — 1] <8<§<e.
On the other hand, B < x < 1, then mir(x, x2) = x2, |x + 1| < 2 and
[f) =1 =x2=1=|x=1]|x+ 1] <28 <e.
Thus, whenevepx — 1] < 6, | f(x) — 1| < e.

28. Prove rigorously that Iirrsin% does not exist.
x—0

SOLUTION Letd > 0 be a given small positive number, and Iebe any real number. We will prove th%ﬂin% — L’ > % for

somex such thafx| < 4.
Let N > 0 be a positive integer large enough so t?@ﬁm < 6. Let

2
MTEUN T )
2
2EUN 131
X2 < X1 < 4.
sinx—llzsinwzl and sinxl—zzsinwz—l.

. 1 : 1 1 1 _gnl 1 1 _anl _

If |smﬂ — L| = 5, we are done. Therefore, let's assume 1l<.mtﬂ —L|<3.—5 <sn 57— L<32,80L—5<sng =

1 < L+ 3. This meansL > 1, so that|sin% —L| = |[-1-L| > 3. In either case, there is ansuch thatlx| < § but
Isind — L| > 1, sono limitL can exist.

29. First, use the identity

. . s (Xt xX—y
smx+smy_23|n( 5 )cos( 5 )

to verify the relation

sin(a + h) — sina = hSir;l(Zz) cos(a + g) @

. .]sin . ) . .
Then use the mequahtHI < 1 for x # 0 to show thatsin(a + &) — sina| < |k| for all a. Finally, prove rigorously that
X
lim sinx = sina.
xX—>a
SOLUTION  We first write
sin(a + h) — sina = sin(a + h) + sin(—a).

Applying the identity withx = a + h, y = —a, yields:

sin(a + h) — sina = sin(a + h) + sin(—a) = 23in(a t+h _a) cos(za + h)
. f(h Y _ (h\ s (P h\ _ , sin(h/2) h
_2sn(§)cos(a+§)—2(h)sn(2)cos(a+2)—h e cos(a+2).

sin(h/2) h
02 H“’S(‘” 5)’

Therefore,

|sin(a + h) — sina| = |h|

. sing . _ . L
Using the fact tha T‘ < 1 and that|cosf| < 1, and making the substitutioh = x — a, we see that this last relation is

equivalent to

|sinx — sina| < |x —al.
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Now, to prove the desired limit, let> 0, and takel = €. If |x — a| < §, then
[sinx —sina| < |[x —a| < § =&,

Therefore, & was found for arbitrary, and the proof is complete.

Further Insights and Challenges

30. Uniqueness of the Limit Prove that a function converges to at most one limiting value. In other words, use the limit definition
to prove that ifxing f(x) =1L, andxli_>mc f(x) =Ly, thenL; = L5.

SOLUTION Lete > 0 be given. Sincc)ec_l)imf(x) = L, there existé; such thatifix — c¢| < §; then| f(x) — L1| < €. Similarly,
sincexing f(x) = L, there exist$, such that ifix — ¢| < § then| f(x) — La| < €. Now let|x — ¢| < min(81, §2) and observe
that

L1 — La| = |Ly — f(x) + f(x)— L]
<L — fX)|+ | f(x) = La|
=f(x) = L1]+|f(x) = La| < 2e.

So,|L; — Ly| < 2¢ foranye > 0. We havelL| — Ly| = Iim0 L1 — Ly| < Iim025 = 0. Therefore|L; — L,| = 0 and, hence,
€—> €—>
Ly =Ls.

In Exercises 31-33, prove the statement using the formal limit definition.

31. The Constant Multiple Law [Theorem 1, part (ii) in Section 2.3, p. 77]
SOLUTION Suppose tha}_l)ip]f(x) = L. We wish to prove tha}_l)isz(x) =alL.
Lete > 0 be givene/|a| is also a positive number. Singgli[ﬁ(x) = L, we know there is & > 0 such thajx — ¢| < ¢ forces
| f(x)— L| <¢€/|a|. Supposeéx —c| < §. |laf(x) —aL| = |a||f(x) —aL| < |a|(¢/]a|) = €, so the rule is proven.
32. The Squeeze Theorem. (Theorem 1 in Section 2.6, p. 96)

SOLUTION Proof of the Squeeze TheoreBuppose that (i) the inequalitiéggx) < f(x) < g(x) hold for all x near (but not
equal to}z and (ii)xli_rnl h(x) = inLnag(x) = L. Lete > 0 be given.

¢ By (i), there exists @; > 0 such thati(x) < f(x) < g(x) whenevel < |x —a| < §;.

e By (ii), there existd, > 0 andds > 0 such thath(x) — L| < € wheneveld < |x —a| < §; and|g(x) — L| < € whenever
0<|x—al<és3.

e Choose§ = min{dy, 42, 83}. Then wheneved < |x —a| < § we haveL — e < h(x) < f(x) < g(x) < L + ¢, i.e,
| f(x) — L| < €. Sincee was arbitrary, we conclude th)eclt_)lliryf(x) =L.

33. The Product Law [Theorem 1, part (iii) in Section 2.3, p. Hihxt: Use the identity
S(x)g(x) = LM = (f(x) — L) g(x) + L(g(x) — M)

SOLUTION Before we can prove the Product Law, we need to establish one preliminary result. We are giventhatdim) =
M . Consequently, if we set = 1, then the definition of a limit guarantees the existence &f & 0 such that whenevey <
|x —c| < 61, |g(x) — M| < 1. Applying the inequalitylg(x)| — |M| < |g(x) — M|, it follows that|g(x)| < 1 + |M]|. In other
words, because lij,. g(x) = M, there exists &; > 0 such thatg(x)| < 1 + |M| whenevel < |x —c| < §;.

We can now prove the Product Law. Let> 0. As proven above, because §m. g(x) = M, there exists &, > 0 such
that|g(x)| < 1 + |M| wheneveld < |x — ¢| < §;1. Furthermore, by the definition of a limit, li;m,. g(x) = M implies there
exists af, > 0 such thatig(x) — M| < m whenever) < |x — ¢| < §>. We have included thel4-" in the denominator
to avoid division by zero in casé = 0. The reason for including the factor of 2 in the denominator will become clear shortly.
Finally, because lipn,. f(x) = L, there exists d3 > 0 such thaf f(x) — L| < whenevel < |x —¢| < §3. Now, let

§ = min(81, 82, 83). Then, for allx satisfyingd < |x — ¢| < §, we have

[f()g(x) = LM| = |(f(x) = L)g(x) + L(g(x) — M)]

__€ ___
2(1+[M1))

<|f)—=Lllgx)| +|L|gx) — M|
€ €
<sazp MY IESET
€ € .

Hence,

JIm f()g) = LM = Jim f(x)- im g(x).
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34. Let f(x) = 1if x isrational andf(x) = 0 if x is irrational. Prove tha;_l)ignf(x) does not exist for any.

SOLUTION Letc be any number, and I16t> 0 be an arbitrary small number. We will prove that there is &uch thatx —¢| < 6,
but| f(x) — f(¢)| > % ¢ must be either irrational or rational. ¢fis rational, thenf(¢) = 1. Since the irrational numbers are dense,
there is at least one irrational numkesuch thatz —c| < 6. |f(z) — f(c)| =1 > % so the function is discontinuous at= c.

On the other hand, if is irrational, then there is mtional numberg such thatg —c¢| < §.|f(g) — f(c)|=1]1-0] =1 > % S0

the function is discontinuous at= c.

35. & Here is a function with strange continuity properties:

1 if x is the rational numbep/q in

f)y=144 lowest terms

0 if x is anirrational number

(@) Show thatf'(x) is discontinuous at if ¢ is rational.Hint: There exist irrational numbers arbitrarily close ¢o

(b) Show thatf(x) is continuous at if ¢ is irrational.Hint: Let 7 be the intervafx : |[x — c¢| < 1}. Show that for anyQ > 0, 1
contains at most finitely many fractiopg'q with ¢ < Q. Conclude that there isésuch that all fractions ifix : |x —¢| < §} have
a denominator larger thaf.

SOLUTION

(a) Letc be any rational number and suppose that, in lowest tarmsp /¢, wherep andq are integers. To prove the discontinuity

of f atc, we must show there is an> 0 such that for any > 0 there is anx for which |x — ¢| < 8, but that| f(x) — f(c)| > €.

Lete = ﬁ and§ > 0. Since there is at least one irrational number between any two distinct real numbers, there is some irrationa
1

x between: andc + 8. Hence/x —¢| < §, but| f(x) = f(0)| = [0— §| = & > 52 = €.
(b) Letc be irrational, lete > 0 be given, and lelV > 0 be a prime integer sufficiently large so thﬁt < €. Let g—ll, e é’—;" be
all rational numbers;i in lowest terms such thag —c| < landg < N. SinceN is finite, this is a finite list; hence, one number
g—l{' in the list must be closest to Let§ = %|§—Ilf —c|. By constructionj‘;’—:f —c| > éforalli = 1...m. Therefore, for any rational
numberZ such that 2 —¢| < §,4 > N, so% <4 <e

Therefore, for anyational numberx such thatx —c¢| < 8, | f(x) — f(c)| < €. |f(x) — f(c)| = 0 for any irrational number
x,80|x —¢| < § implies that| f(x) — f(c)| < e for any numberx.

CHAPTER REVIEW EXERCISES

1. The position of a particle at time(s) iss(z) = ~/t2 + 1 m. Compute its average velocity o, 5] and estimate its instanta-
neous velocity at = 2.

SOLUTION Lets(¢) = +~/¢2 + 1. The average velocity ovg2, 5] is

5(5; - ;(2) - ‘/%3_ V5 0.954 m/s

From the data in the table below, we estimate that the instantaneous velacityais approximately.894 m/s.

interval [1.9,2] | [1.99.2] | [1.999.2] | [2,2.001] | [2.2.01] | [2.2.1]
average ROC| 0.889769| 0.893978| 0.894382| 0.894472| 0.894873| 0.898727

2. The “wellhead” pricep of natural gas in the United States (in dollars per 108Ddn the first day of each month in 2008 is
listed in the table below.

J F M A M J
6.99 | 7.55| 8.29 | 8.94| 9.81 | 10.82

J A S @) N D
10.62 | 8.32| 7.27| 6.36 | 597 | 5.87

Compute the average rate of change@in dollars per 1000 f per month) over the quarterly periods January—March, April-June,
and July—September.

SOLUTION To determine the average rate of change in price over the first quarter, divide the difference between the April anc
January prices by the three-month duration of the quarter. This yields

8.94 —6.99

3 = 0.65 dollars per 1000 ft per month
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In a similar manner, we calculate the average rates of change for the second and third quarters of the year to be

10.62 — 8.94

3 = 0.56 dollars per 1000 ft per month

and
6.36 — 10.62
3
3. For a whole numben, let P(n) be the number opartitions of n, that is, the number of ways of writing as a sum of one
or more whole numbers. For examplR(4) = 5 since the numbet can be partitioned in five different ways; 3 + 1,2 + 2,
2+ 1+ 1,andl + 1+ 1 + 1. Treating P(n) as a continuous function, use Figure 1 to estimate the rate of changé:pfat
n=12.

= —1.42 dollars per 1000 ft per month

P(n)

160

120

80 7
40

0 = n
0 2 4 6 8 10 12 14
FIGURE 1 Graph of P(n).

SOLUTION The tangent line drawn in the figure appears to pass through the pbintgl0) and(10.5, 40). We therefore estimate
that the rate of change d&f(n) atn = 12 is

140—-40 100 _ 200
15-105 45 9
4. The average velocity (m/s) of an oxygen molecule in the air at temperatlir€C) isv = 25.74/273.15 + T. What is the

average speed §t = 25° (room temperature)? Estimate the rate of change of average velocity with respect to temperature at
T = 25°. What are the units of this rate?

SOLUTION Letwv(T) = 25.74/273.15 + T. The average velocity & = 25°C is

v(25) = 25.7+/273.15 + 25 ~ 443.76 m/s.

From the data in the table below, we estimate that the rate of change of velocity with respect to temperatife=w88hC is
0.7442 m/$.

interval [24.9,25] | [24.99,25] | [24.999,25] | [25,25.001] | [25.25.01] | [25.25.1]
average ROC| 0.744256| 0.744199 | 0.744193 | 0.744195 | 0.744187 | 0.744131

In Exercises 5-10, estimate the limit numerically to two aetiplaces or state that the limit does not exist.

1 —cos
x—>0 X

SOLUTION Let f(x) = 1—(;%%)6 The data in the table below suggests that

1—cos x N

In constructing the table, we take advantage of the fact fhiatan even function.

x | 40001 | =+0.01 +0.1
f(x) | 1.500000| 1.499912| 1.491275

(The exact value ig.)

6. lim x!/&=1
x—1

SOLUTION  Let f(x) = x/*~=1D_ The data in the table below suggests that

lim x/G=D ~ 272,

x—>1

X 0.9 0.99 0.999 1.001 1.01 11
f(x) | 2.867972| 2.731999| 2.719642| 2.716924 | 2.704814| 2.593742

(The exact value ig.)
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.ox¥—4
7. lim
x—>2x2—4
SOLUTION Let f(x) = );;:;‘.The data in the table below suggests that
o ox¥—4
lim — ~ 1.69.
x—>2 x* —4
X 1.9 1.99 1.999 2.001 2.01 21

f(x) | 1.575461| 1.680633| 1.691888| 1.694408| 1.705836| 1.828386

(The exact value i$ +In2.)
8. lim o x=2
x—21n(3x —5)

SOLUTION Let f(x) = The data in the table below suggests that

x—2
In(3x—5) "
-2

lim — = ~0233.
x—2In(3x —5)

X 1.9 1.99 1.999 2.001 2.01 2.1
f(x) | 0.280367| 0.328308| 0.332833| 0.333833| 0.338309| 0.381149

(The exact value i$/3.)

7 3
9. lm|—— - ——=
x|—>1(1—x7 1—x3)

SOLUTION Let f(x) = (1_7x7 - ﬁ) The data in the table below suggests that
7 3
lim | —— — ——~ | &~ 2.00.
x—)l(l—x7 1—x3)
X 0.9 0.99 0.999 1.001 1.01 1.1

f(x) | 2.347483| 2.033498| 2.003335| 1.996668| 1.966835| 1.685059

(The exact value i8.)

X _

10. lim 3 o

x—2 5% —25
SOLUTION Let f(x) = 53;%;5. The data in the table below suggests that

X
im ~ 0.246.
x—>2 5% =25
X 1.9 1.99 1.999 2.001 2.01 21

f(x) | 0.251950| 0.246365| 0.245801| 0.245675| 0.245110| 0.239403

(The exact value igx {3 .)

169

In Exercises 11-50, evaluate the limit if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

11. lim 3 + x'/?)
x—>4
SOLUTION  lim 3 +x!/2) =34+ V4 =5.
x—4

. 5—x2
12. lim al
x—>14x +7

5 x2 512 4
SOLUTION  lim = = —.
x—=>14x+7 41 +7 11
4
3

13. lim

xX—>—-2 X
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SOLUTION lim 4 _ 4 _ ]
x—>—2x3  (=2)3 2’
3x2 +4x +1

14. lim X +ax+1

x——1 x+1
3x244x +1 lim Gx+Dx+1)

SOLUTION lim = lim Bx+1)=3-1)+1=-2.
x—>—1 x+1 x—>—1 x+1 x—>—1
t—3
15. lim vt
t—9 t—9
. t—3 . t—3 . 1 1 1
SOLUTION lim Vi = lim Vi = lim = = -
159 =9 59 (JI=3)Wt+3) t>9i+3 JV9+3 6
Y 1-2
16. lim YXF17°2
x—3 x—3
SOLUTION
. oAx+1-=-2 oA+ 1=2 x4+ 142 . x+1)—4
lim = lim . = lim
x—>3 x-3 x—3 x-3 Vx+1+2 x=23x=-3)Wx+1+2)
= lim ! = ! _ !
T xo3x+ 142 3+1+2 4
3_
17. lim 2 —2
x—>1 X —
3
. — . -1 1 .
SOLUTION  lim AN lim =D+ 1D =limx(x+D)=1(1+1)=2.
x—>1 x—1 x—1 x—1 x—1
2 h)? =242
18. lim M
h—0 h
SOLUTION
2 m?%—2a% . 24% +4ah +2h% —24% . h(da +2h _
lim 2@ =207 2a7 + dah + @ im MO i (a4 20) = 44+ 2(0) = 4a.
h—0 h h—0 h h—0 h h—0
19. lim
=9/t =3
SOLUTION Because the one-sided limits
iim =8 and  lim ~=°
= —0 = OO,
t—>9— ./t -3 =9+ /1 -3
are not equal, the two-sided limit
. t—06 .
lim does not exist.
t—9 ﬁ -3
o 1—=4/s2 41
20. lim —_—
s—0 S
SOLUTION
im 1—Vs2+1 im 1-VsZ4+1 1+Vs2+1 lim 1—(G2+1)
5—0 52 T s>0 52 1+ V52 +1 s=052(1+ /52 1+ 1)
= lim < -1 _ ]
s=>01 4+ /5241 1+/02+1 2
21. lim
x—=—14+x + 1

SOLUTION Forx > —1,x + 1 > 0. Therefore,

. 1
lim =0
x—>—1+x+1

o 3y245y-2
22. lim )}2#
y—>1 6ys —5y +1
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SOLUTION
i DIy -2 L Gy-DOo+2) L y+2
y>y =Sy L Gy=DRy =D 2y -1
3
-2
23. lim = —=*
x—>1 X —

SOLUTION Because the one-sided limits

. x3—2x . x3—2x
lim = 00 and lim = —00,
x—=>1- x—1 x—>1+ x—1
are not equal, the two-sided limit
ox3—2x .
lim does not exist.
x—=1 x—1
2 2
—3ab +2b
24. lim a” —3ab + 20"
a—b a—>b
2 2
. —3ab +2b . —b)(a—2b .
SOLUTION  lim az—dab+ 207 = lim w = lim(a —2b) =b—2b = —b.
a—b a—>b a—b a—>b a—b
3x _ X
25, lim & —°¢
x—0 eX¥ —1
SOLUTION
3x x X (pX x
. - . -1 1 .
lim u:llme(e )e Jr):Ilme)‘(e)‘+1)=1-2:2.
x—0 e¥ —1 x—0 eX —1 x—0
. sin56
26. lim
9—0 O
SOLUTION
. sin56 . sin50
lim =5 lim =5(1) =5.
6—0 6
27. lim M
x—>1.5 X
. 1.5 1 2
SOLUTION lim ] = u = — ==

x—>15x 15 15 3
28. lim secf

0—->Z
SOLUTION
. T
lim sect = sec— = /2.
0—>% 4
. 3
29. lim L
z—>-3z2 44z +3
SOLUTION
. z+3 . z+4+3 . 1 1
im — = |m ———~ = |im — = ——.

z—>—3z2 44z 43 :z—>—3(2+3)(2+1) T3z 41 2
20, fim = -9 tax—1
x—>1 x—1

SOLUTION  Using
Xoax?tax—1= (x—l)(x2+x+ )—ax(x—1) = (x—l)(x2+x—ax+ 1)
we find

o oxd—ax?tax—1 (= DEZ4+x—ax+1)
lim = lim
x—1 x—1 x—1 x—1

=limGxZ+x—ax+1)
x—>1

=1’+1-a()+1=3-a.

171
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o x3=p3
lim

31.
x—>b x—b

3_413 —-b 2 b b2
soLuTion  lim Y0 _ jim 2D 4T (x2 + xb + b%) = b% + b(b) 4+ b* = 3b>.
x—>b x—b x—b x—b x—b
sin4
32. lim >~
x—0 Sin3x
SOLUTION
sin4 4 . sin4 3 4 sin4 3 4
im — x——llm X~_x == lim x-m _x ==-(D() =
x—0sin3x 3x—0 4x sin3x 3x—»0 4x x—0SinN3x 3
. 1 1
38 Iim|{—————
x—>0\3x x(x+3)
. 1 1 . (x+3)-3 1 1 1
SOLUTION |m | ————— )= li = lim = = -,
x>0\ 3x x(x+3) x—0 3x(x + 3) x>03(x+3) 300+3) 9
34. lim 3@nro)
0—>%
SOLUTION
||m 3tan(n0) — 3tan(n/4) — 31 =3,
9—)%
35. lim M
x—>0— X
SOLUTION  For x sufficiently close to zero but negatiie;] = —1. Therefore,
. =1
lim M: lim — = o0.
x—>0— X x—>0— X
36. lim M
x—>0+ X
SOLUTION  For x sufficiently close to zero but positives] = 0. Therefore,
. . 0
lim M lim —=0.
x—>0+ X x—>0+ X
37. lim 6 secH
0—>%
SOLUTION Because the one-sided limits
lim O6secd = and lim 6secd = —c0
0—>%— 6—>Z+
are not equal, the two-sided limit
lim 6 secé does not exist.
0—-Z
38. lim In (sinz)
y—>2 y
SOLUTION
lim In (sinz) = In(sin£> =Inl1=0.
y—>2 y 2
cosf —2
39. Im —
0—0 6
SOLUTION Because the one-sided limits
. cosf —2 . cosf —2
Iim —— = and im —— = -0
60— 6 6—0+ 0
are not equal, the two-sided limit
. cosf —2 .
lim —— does not exist.
#—0 0

4

3



Chapter Review Exercises 173

40. lim
x—4.3 x — [x]
. 1 1 10
SOLUTION lim = = — = —.
x—>43x —[x] 4.3 —[4.3] 3 3

. -3
41. lim

x—>2—Xx—2

SOLUTION Forx close to 2 but less than 2,— 3 < 0 andx — 2 < 0. Therefore,
lim —
x—>2—Xx —2

I
8

SOLUTION Note that

sikt sint sint 1

t3 t t ot

Ast — 0, each factor ofﬁ approaches 1; however, the factértends to—oo ast — 0— and tends too ast — 0+.
Consequently,

_sim?s st
lim —— = -, lim 3~ =
t—>0— t—>0+ 1
and
_sin?s )
lim does not exist
t—>0 13

1 1
43. lim -
(=)
. . WV 1—-1
SOLUTION  lim im Y217

1 1
x—>1+(4/x_1_4/x2_1)_x—>1+ 2 —1
44. lim Vi(Int — 1)

t—e

SOLUTION

tli_r)ne Vilnt —1) = tli_r)ne ﬁ.)m(lnz —1) = Ve(ne—1) =0.

45, lim tanx
x—>%

SOLUTION Because the one-sided limits

lim tanx = oo and lim tanx = —c0
x—>Z— x5+

are not equal, the two-sided limit

Iimﬂ tanx does not exist.

X—>%5
. 1
46. lim cos—
t—0 t
SOLUTION Ast — 0, % grows without bound and c()$) oscillates faster and faster. Consequently,
. 1 .
lim cos| — does not exist
t—0 t
The same is true for both one-sided limits.

. 1
47. lim +/1cos=
t—>0+ t
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SOLUTION Fort > 0,
1
—1 <cos - <1,

Vi< ﬁcos(;) < Vi,

SO

Because

lim —v7= lim =0,
t—0+ t—>0+

it follows from the Squeeze Theorem that

. 1
lim ﬁms(—) =0.
t—>0+ t

2_24
48. lim =~
x—5+ x2 =25

SOLUTION Forx close to 5 but larger than 52 — 24 > 0 andx? — 25 > 0. Therefore,

x2—-24
im =00
x—5+ x2 —25
cosx — 1
49, lim 22X~
x—>0 SInx
SOLUTION
i cosx —1 im cosx —1 cosx+1 i —sin x _ i sinx 0 —o
x>0 sinx  x—0 sinx cosx+1 x—o0sinx(cosx +1)  x—o0cosx +1  1+1
tanf — siné
50. lim —v —SNY
6—>0 siPo
SOLUTION
. tand —sind . secd — 1 _ sech—1 sec+1 ) tar? 9
I|m_7:||m_7:|m - . =\1im —-—-=————--
6—0 sin® 0 6—>0 sin? @ 60 siff secd+1 6—0sin?H(secd + 1)
sed 6 1 1

=Im —=—=-.
p—o0 secd + 1 1+1 2
51. Find the left- and right-hand limits of the functigf(x) in Figure 2 atv = 0, 2, 4. State whethey'(x) is left- or right-continuous

(or both) at these points.

2

FIGURE 2

X

4 5

‘ 1 2

SOLUTION  According to the graph of (x),
Jim f = lim £ =1
My )= i S) =0
Iim f(x) =—-o00
x—>4—
x|_|>n2+ f(x) = oc.

The function is both left- and right-continuous at= 0 and neither left- nor right-continuous at= 2 andx = 4.
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52. Sketch the graph of a functiofi(x) such that
(& Ilim f(x) =1, lim f(x)=3
x—>2— x—>2+

(b) Iim4 f(x) exists but does not equgl(4).
x—

SOLUTION

53. Graphh(x) and describe the discontinuity:

e* forx <0
Inx forx >0

h(x) = {

Is h(x) left- or right-continuous?

SOLUTION The graph ofz(x) is shown below. Atk = 0, the function has an infinite discontinuity but is left-continuous.

-4 -2 2 4

54. Sketch the graph of a functiogi(x) such that

lim X) = 00, lim X) = —o0, lim g(x) = 0
x—>—3—g( ) x—>—3+g( ) x—>4g( )

SOLUTION

y

1ol J k
?—J + + + + X
2 4 6

ol

55. Find the points of discontinuity of

cos(%x) for|x| <1
g(x) =

[x —1] for |x| > 1
Determine the type of discontinuity and whetlg€r) is left- or right-continuous.

SOLUTION First note that co@”z—x) is continuous for-1 < x < 1 and that|x — 1] is continuous forx < —1 and forx > 1.
Thus, the only points at whichi(x) might be discontinuous are= +1. At x = 1, we have

s = Jm_cos(5) = eos(5) =0
and

lim = |im —1l=|1-1] =0,
im g(r) = lim v —1]=1-1]
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S0 g(x) is continuous ak = 1. On the other hand, at= —1,

X s
lim = lim cos —) = COoS ——) =0
x—>—1+g(X) x—>—1+ ( 2 ( 2

and
im gx)= Im |x—1=|]-1-1]=2,
x—>—1— x—>—1—
s0g(x) has a jump discontinuity at = —1. Sinceg(—1) = 2, g(x) is left-continuous ak = —1.

56. Show thatf (x) = xeS"* is continuous on its domain.

SOLUTION Because* and sinx are continuous for all real numbers, their compositkﬁ‘ﬂx is continuous for all real numbers.

Moreover,x is continuous for all real numbers, so the produet™ is continuous for all real numbers. Thug(x) = xeS"* is
continuous for all real numbers.

57. Find a constank such that:(x) is continuous ak = 2, where

x+1 for|x| <2
h(x) = 2
b—x= for|x|>2

With this choice of, find all points of discontinuity.
SOLUTION To makek(x) continuous ak = 2, we must have the two one-sided limits,aapproaches 2 be equal. With

Iim hA(x)= Im (x+1)=2+1=3
x—>2— x—>2—
and
lim h(x)= lim (b—x%)=b—4,
x—>2+ (X) x—>2+( * )
it follows that we must choosk = 7. Becausex + 1 is continuous for-2 < x < 2 and7 — x?2 is continuous forx < —2 and for
x > 2, the only possible point of discontinuity is= —2. At x = -2,
Iim h(x)= Ilm (x+1)=-24+1=-1
x—>—2+ x—>—2+
and
lim h(x)= lim (7—-x2)=7-(-2)2 =3,
X—>—2— xX—>—2—
soh(x) has a jump discontinuity at = —2.

In Exercises 58—63, find the horizontal asymptotes of the function by computing the limits at infinity.

9x2 —4
58. f(x) = ———
f@) =55
SOLUTION Because
9x2 —4 . 9—4/x2 9
im = —_— ==
x—002x2 —x x—oo 2—1/x 2
and
. 9x2—4 o 9—4/x2 9
lim = _— =,
x—>—002x2—x x—>-o00 2—1/x 2
2_4
it follows that the graph of = has a horizontal asymptote éf.
2x2 — x
2 4
-3
59. f(x) = — 2%
x—1
SOLUTION Because
o ox2—3x4 1/x2 -3
lim = lim = —00
x—oo x—1 x—o00 1/x3 —1/x4
and
. xZ —3x* . 1/x2 -3
lim —— = — =00,
x—>—00 x—1 xX—>—00 1/x3—1/x4

2 4

. -3 .

it follows that the graph of = % does not have any horizontal asymptotes.
X —
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8u—3
60. f(u) = ———
V16u? +6
SOLUTION Because
lim o3 gy S 8,
u=0 JleuZ +6 ¥ /16 + 6/u2 /16
and
. 8u—3 . 8—3/u 8
lim ——— = lim = =-2,
u=>=00 J16uZ +6 4=~ /16 +6/u> —+/16
8u—3
it follows that the graph of = ———— has horizontal asymptotes of= +2.
V16u? +6
2u? —1
6l. f(u) = ——
1=
SOLUTION Because
w1 . 2—1/u? 2
lim —/—— = |lim ——— = — =2
u—00 /6 + 4 U—00 /6/u4+1 ﬁ
and
. u? —1 . 2—1/u? 2
im — = |lim ——— = — =2,
u—>=00 /6yt u=>—o Jomd 11 J1
it follows that the graph of = 2?1 has a horizontal asymptote of= 2
V6 +ut '
3 2/3 9 3/7
62. fx)= > TN
Tx4/5 — 4x—1/3
SOLUTION Because
3X2/3 +9X3/7 3)C_2/15 + 9X_13/35
im ——————— = |im =0
x—>00 Tx4/5 —_ 4x—1/3 x—o0 7 — x—17/15
and
3)C2/3 +9x3/7 3X_2/15 + 9x—13/35
im ————————— = lim =0,
X——00 7x4/5 _ 4X_1/3 X—>—00 7 — x—17/15
it follows that the graph 323 4+ 937 | ahorizontal f
it follows that the graph of = A5 a3 as a horizontal asymptote pf= 0.
(/3 _—1/3
63. f(1) = GO
SOLUTION Because
i (13 =173 i 1—¢72/3 1
e = e s s
and
i 113 =173 i 1—¢72/3 1
t_lToo (t —t—1)1/3 - t_erOO (1—1=2)1/3 T3 L
(/3 _ =173
it follows that the graph of = W has a horizontal asymptote of= 1.
t—1t—
64. Calculate (a)—(d), assuming that
lim f(x) =6, lim g(x) =4
x—3 x—3
(@) lim (f(x)—2g(x)) (b) lim x? f(x)
x—3 x—3
) f(x) i 3 3/2
lim ———— d) lim (2 -
© lim 2() +x (@) lim (2g(x)” - g(x)™*)

177



178 CHAPTER 2 | LIMITS

SOLUTION
(@) Jim (f(x) = 2¢(x)) = lim_f(x)=2 lim g(x) = 6—2(4) = -2.
(b) |@3x2f(x) = Ii|_1)13x2 : @3 f(x) =3%.6 =54
f(x) limy_3 f(x) 6 6 6

c) lim = _ = — _ = = _.
© x=>3g(x)+x  limys3(gx)+x)  limys3gx) +limyszx 443 7

3/2
d lim (2g(x)> —g(x)¥/?) =2 ( lim g(x)) - (Iim g(x)) =2(4)3 — 43/2 = 120.
x—3 x—3 x—3
65. Assume that the following limits exist:
— i I o S

A=lim s, B=lme), L=lm- %
Prove that if L = 1, then4 = B. Hint: You cannot use the Quotient Law# = 0, so apply the Product Law tb and B instead.
SOLUTION Suppose the limitgl, B, andL all exist andL = 1. Then

B:B-l:B-L:inLnag(x) lim &_ lim ()&z lim f(x) =

x—a g(x) x—a ( ) x—a
66. [GU] Defineg(r) = (1 +2'/)~! for ¢ # 0. How shouldg (0) be defined to make(t) left-continuous at = 0?
SOLUTION Because

-1
lim (1+2Y/071 = [ g (1+21/’)] 1=,
t—>0— t—0—

we should defing (0) = 1 to makeg(¢) left-continuous at = 0.

67. & In the notation of Exercise 65, give an example wherexists but neitherd nor B exists.
SOLUTION Suppose

fo = —1  and g =

(x —a)3 C (x—a)5
Then, neithed nor B exists, but

o (x—a)_3_ . 2
L= xlm;]a (x—a)—> o xlm;]a(x —a)
68. True or false?

(@ If Iim f(x) exists, then Iimf(x) = f(3).

(b) If I|m M = 1, then f(0) = 0.

(c) If xll_r)n_7 f(x) =8, then I|m f(x) = é
(d) If x[)n;r fx)=4 andx_ll)rp_ f(x) =38, thenx[)n; f(x)=6.

(e) If lim & = 1,then lim f(x) = 0.
x—>0 X x—>0
(f) If im_f(x) = 2, then lim f(x)3 = 8.
x—>5 x—>5
SOLUTION
(a) False. The limit Iim f(x) may exist and need not equA(3). The limit is equal tof'(3) if f(x) is continuous at = 3.
x—3

f(x)

(b) False. The value of the limit Ilm— = 1 does not depend on the valy&0), so f(0) can have any value.
x—0

(c) True, by the Limit Laws.
(d) False. If the two one-sided limits are not equal, then the two-sided limit does not exist.

(e) True. Apply the Product Law to the functiorfs(x—) and x.
X
(f) True, by the Limit Laws.

69. & Let f(x) =x [ ] where[x] is the greatest integer function. Show that fog 0,

Then use the Squeeze Theorem to prove that

Hint: Treat the one-sided limits separately.
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SOLUTION Let y be any real number. From the definition of the greatest integer function, it follows thdt < [y] < y, with
equality holding if and only ify is an integer. Ifc # 0, then% is a real number, so

1 [1] 1
——l<|-|=-.
X X X

Upon multiplying this inequality through hy, we find
1
l—x<x [—] <.
X

Iim1—-x)=Ilim1=1,
x—0 x—0

Because

it follows from the Squeeze Theorem that

1
lim x [—i| =1
x—0 X
70. Letr; andr, be the roots off (x) = ax? — 2x + 20. Observe thaif (x) “approaches” the linear functioh(x) = —2x + 20
asa — 0. Because = 10 is the unique root of.(x), we might expect one of the roots ¢fx) to approachi0 asa — 0 (Figure
3). Prove that the roots can be labeled so that #im= 10 and Iin?) Iy = 00.
a—>

a—0

Root tending to «
y asa - 0

a=0.008
2001 Root a =0.00z

\7 near 10

100 200 300 /400

X

-200T1

FIGURE 3 Graphs of f(x) = ax? — 2x + 20.

SOLUTION  Using the quadratic formula, we find that the roots of the quadratic polynofiiigl = ax2? — 2x + 20 are

24+ /4-80a 1++/1-20a 20
2a a T 1xJ1-20a
Now let
20 20
rl:il—l—m and r2:71—m'
It is straightforward to calculate that
lim r; = lim Lzﬁzlo
a—0 a—>0 1+ +/1—20a 2
and that
lim rp, = lim L:oo
a—0 a—01—4/1—20a
as desired.

71. Use the IVT to prove that the curves= x2 andy = cosx intersect.
SOLUTION Let f(x) = x2 — cosx. Note that any root off (x) corresponds to a point of intersection between the cuyvesx?

andy = cosx. Now, f(x) is continuous over the intervdl, Z], f(0) = —1 < 0 and f(§) = ”TZ > 0. Therefore, by the
Intermediate Value Theorem, there exists & (0, Z) such that f(c) = 0; consequently, the curves = x2 andy = cosx
intersect.
x2 42 . .
72. Use the IVT to prove thaf'(x) = x3 — ——— has a root in the intervdD, 2].
cosx + 2

— 43 242 ; . .
SOLUTION Let f(x) = x° — ﬁ Because cos + 2 is never zerof(x) is continuous for all real numbers. Because

f(O):—§<0 and f(2)=8 ~ 421 >0,

T cos2 +2

the Intermediate Value Theorem guarantees there exists @, 2) such thatf(c) = 0.
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73. Use the IVT to show thaét‘x2 = x has a solution o0, 1).

SOLUTION  Let f(x) = e~** — x. Observe thaf is continuous of0, 1] with £(0) = ¢® —0 =1 > 0and f(1) = e~ —1 < 0.
Therefore, the IVT guarantees there existsa (0, 1) such thatf(c) = )
74. Use the Bisection Method to locate a solutiodf— 7 = 0 to two decimal places.

SOLUTION Let f(x) = x2 — 7. By trial and error, we find thaf (2.6) = —0.24 < 0 and f(2.7) = 0.29 > 0. Becausef (x)

is continuous oif2.6, 2.7], it follows from the Intermediate Value Theorem thétr) has a root or{2.6, 2.7). We approximate the
root by the midpoint of the intervak = 2.65. Now, f(2.65) = 0.0225 > 0. Becausef'(2.6) and f(2.65) are of opposite sign, the
root must lie on(2.6, 2.65). The midpoint of this interval is = 2.625 and f(2.625) < 0; hence, the root must be on the interval
(2.625,2.65). Continuing in this fashion, we construct the following sequence of intervals and midpoints.

interval midpoint
(2.625,2.65) 2.6375
(2.6375,2.65) 2.64375
(2.64375,2.65) 2.646875
(2.64375,2.646875) 2.6453125
(2.6453125,2.646875) | 2.64609375

At this point, we note that, to two decimal places, one rootdf- 7 = 0 is 2.65.

75. & Give an example of a (discontinuous) function that does ngfgahe conclusion of the IVT ofi-1, 1]. Then show

that the function
sinl x#0
Sx) = x
0 x=0

satisfies the conclusion of the IVT on every interjvak, a], even thoughyf is discontinuous at = 0.

SOLUTION Let g(x) = [x]. This function is discontinuous dr-1, 1] with g(—1) = —1 andg(1) = 1. For allc¢ # 0, there is no
x such thatg(x) = c; thus,g(x) does not satisfy the conclusion of the Intermediate Value Theorefmbr].
Now, let

in(L
Flx) = sm(x) forx #0
0 forx =0
and leta > 0. On the interval
c a a c [ ]
X _—, = —d,d
24 2ma’ 2 T

% runs from% to % + 27, so the sine function covers one full period and clearly takes on every value-fnu through sinz.

1
-2
(a) Show that’f(x)— H < "‘12 |

(b) Find§ > 0 such that‘f(x) _ H <0.01 for |x — 2| <.

if |[x —2| < 1. Hint: Observe thai4(x 4 2)| > 12if |[x —2] < 1.

(c) Prove rigorously that limf(x) = %.
x—>2

SOLUTION
(a) Let f(x) = z+5. Then

1 1 1 4—(x+2) lx —2|
- =|—=-7|= = :
4 x+2 4 4(x +2) |[4(x + 2)|
If |[x —2] < 1,thenl < x < 3,803 <x +2 < 5andl2 < 4(x + 2) < 20. Hence,
1 1 [x — 2]
- J— and - —
Hx+2)] 12 ‘f(x) 4‘ 12
(b) If |x — 2| < §, then by part (a),
1 )
‘f(x)—z < E

Choosing$ = 0.12 will then guarantee thatf (x) — %| < 0.01.
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(c) Lete > 0 and takes = min{1, 12¢}. Then, whenevelx — 2| < 6,

x+2 4

k-2 &
< < — =€

1 1 [2—x]
T 4x 4217 12 12

-4 -

77. Plot the functionf(x) = x1/3. Use the zoom feature to findSa> 0 such thafx!/3 — 2| < 0.05 for |x — 8| < 6.

SOLUTION The graphs of = f(x) = x1/3 and the horizontal lineg = 1.95 andy = 2.05 are shown below. From this plot,
we see thaf = 0.55 guarantees thdk /3 — 2| < 0.05 wheneverx — 8| < 6.

v

7 7.5 8 8.5

78. Use the fact thaff (x) = 2* is increasing to find a value ¢fsuch thaf2* — 8] < 0.001 if |[x — 2] < §. Hint: Findc¢; andc;
such that.999 < f(c1) < f(c2) < 8.001.

SOLUTION From the graph below, we see that
7.999 < £(2.99985) < £(3.00015) < 8.001.

Thus, withs = 0.00015, it follows that|2* — 8| < 0.001 if |x — 3| < §.

8.002
8.001

8
7.999 ~
7.998
7.997

LA

2.9996 2.9998 3 3.0002 3.0004
79. Prove rigorously that lim(4 + 8x) = —4.
x—>—1
SOLUTION Lete > 0 and take = ¢/8. Then, whenever — (—1)| = |x + 1] < 4,
[f(X)—(=4)| =4 +8x+4 =8|x+ 1] <8 =e.
80. Prove rigorously that lin{x% — x) = 6.
x—3

SOLUTION Lete > 0 and take§ = min{l, ¢/6}. Becaus&S < 1, |x — 3| < § guaranteesx + 2| < 6. Therefore, whenever
|x —3| <,

| f(x)—6] = |x2—x—6] = |x =3||x +2| < 6]x — 3| < 65 <e.
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Chapter 2: Limits
Preparing for the AP Exam Solutions

Multiple Choice Questions

1) B 2) A 3 C 4) D 5) E 6) B
7) E 8) B 9 C 10) A 11) C 12) A
13) D 14) C 15) B 16) B 17) D 18) E
19) E 20) B

Free Response Questions
-1 1

(CH-10) ) Q) 1, 2 g

3r « T r 3r 1 37

2 2
b) lim f (x) =1

c) No, Iirrg f (x) =1, so neither the left-hand limit nor the right hand limit is infinite, which is needed for the

1.a)

graph to have a vertical asymptote.

d) We know —1<sinx <1, soif x>0, then -1 < six < i and since lim -1 =0=Ilim 1 , the Squeeze
X X X X—00 X X—00 X
o .osinX : . . :
Theorem implies lim—— = 0. This means the line y = 0 is a horizontal asymptote.
X—»00 X
POINTS:
(@) (2 pts) 1) change iny; 1) answer
(b) (1 pt)
(c) (3 pts) 1) “no”; 1) mentioning finite limit; 1) mentioning need for infinite limit
@Gpts) ) 2<IMX L9y im =20 =1im2: 1) conclusion
X X X X—00 X X—»00 X
2 2
. X“—=7x+10 . . i . X —=7x+10
2. a) The function f(X)=—————— isdiscontinuous atx =5and x=-5. First, lim————— =
X" =25 -5 X°—25

lim X =X=2) _ (x=2) _ 3

. Thus the line x =5 is not a vertical asymptote. Next,
x5 (X=5)(x+5) x5 (x+5)

2
. X =T7x+10 . X=2 . . .
lim ————— = lim —— = —oo Thus the line x = -5 is a vertical asymptote.
x> X*—25 x>5" X+5
2 2

. X" —=7x+10 . . . . X°—=7x+10 .
b) lim————— =1, sothe liney = 1 is a horizontal asymptote. Also lim —————— =1, so the line

X—>0 X2 —-25 X—>—00 XZ —

y = 1is the only horizontal asymptote.

c) Yes, since lim f (x) = 3 ,We can let A= i
x5 10 10
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d) No, since Iim5 f (x) does not exist, there is no possible value for B.
X—>—!

POINTS:
(@) (4 pts) 1) “no” for x = 5; 1) Limit is %; 1) “yes” for x = -5; 1) infinite limit
(b) (3 pts) 1) y=1; 1) Limitat co. 1) Limit at —
3
c)(lpt) A= —
(c) (1pt) 10
(d) (1 pt) No limit.

3.a) Since —5< f(x) <10, if x> 0then —5x < xf (X) <10x. Thus by the Squeeze Theorem XIlrgl xf(x) =
0. Next, if x <0, then —5x> xf (x) >10x. Applying the Squeeze Theorem again, XIIT xf (X) _6. Thus
Ixi_rlg xf (X) = IXI_rIg g(x) =0. Checking the functional value, we have g(0) =0-3= 0._)Thus

Ixigg g(x) =g(0), so g is continuous at x = 0.

by No. lim 30 =0 _ i ()
x>0 xX—=0 x>0 X

= Iing f (x), which does not exist.
X—

POINTS:

(@) (6 pts) 1) g(0) =0; 1) if x> 0then —5x < xf (x) <10x; 1) Iirgxf(x) =0;

if x <0, then —5x > xf (x) >10x; 1) Iirgxf(x)zo; 1) Iirrgg(x)zo

99 =0, 13 1im 99 =0 _ i £ (%) : 1) Answer
X—0 x—0

x—0 X—

(b) (3 pts) 1) Considers Iirrg

4. a) First, lim f(x) = lim (6 —x) = 2. Next lim f(x) = lim%/2x =38 =2.
x—>4* x—>4" X—4~ X—4~
So Iinj1 f (x) =2. Also f(4) = 2, which means f is continuous at x = 4.

f(.004)—f(0) 3/008 .2

b) = = =50
.004-0 .004 .004
_ 3 3
¢) No, lim =10 = Iim@ =lim \gs does not exist.
x—0 X—0 x>0 X x—0 X
POINTS:

@ (5pts) 1) lim(6-x)=2;1) |ir?_i/2_:2;1) lim £ (x) =2; 1) f(4) = 2; 1) Answer
(b) (1 pt)

(c) (3 pts) 1) Considers lim —————=

x—0 X—0

f()-f(0). \/2_ 32

;1) i I ;1) I|m NETE does not exist.
X




