\qquad

SLOPE FIELDS
Sketch the differential equation.

1. $\frac{d y}{d x}=x+1$

2. $\frac{d y}{d x}=2 y$

3. $\frac{d y}{d x}=x+y$

4. $\frac{d y}{d x}=y-1$

5. $\frac{d y}{d x}=2 x$

6. $\frac{d y}{d x}=-\frac{y}{x}$

Match the slope fields with their differential equations.
(A)

(B)

(C)
(D)

7. $\frac{d y}{d x}=\sin x$
8. $\frac{d y}{d x}=x-y$
9. $\frac{d y}{d x}=2-y$
10. $\frac{d y}{d x}=x$

Match the slope fields with their differential equations.
(A)

(B)

(D)

11. $\frac{d y}{d x}=.5 x-1$
12. $\frac{d y}{d x}=.5 y$
13. $\frac{d y}{d x}=-\frac{x}{y}$
14. $\frac{d y}{d x}=x+y$

15. The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=x^{2}$
(B) $y=e^{x}$
(C) $y=e^{-x}$
(D) $y=\cos x$
(E) $y=\ln x$

16. The slope field for a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=\sin x$
(B) $y=\cos x$
(C) $y=x^{2}$
(D) $y=\frac{1}{6} x^{3}$
(E) $y=\ln x$

17. Shown above is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=x y$
(B) $\frac{d y}{d x}=x y-y$
(C) $\frac{d y}{d x}=x y+y$
(D) $\frac{d y}{d x}=x y+x$
(E) $\frac{d y}{d x}=(x+1)^{3}$

18. Shown above is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=x y-x$
(B) $\frac{d y}{d x}=x y+y$
(C) $\frac{d y}{d x}=y-x^{2}$
(D) $\frac{d y}{d x}=(y-1) x^{2}$
(E) $\frac{d y}{d x}=(y-1)^{3}$

19. The slope field for a certain differential equation is shown above. Which of the following could be a solution to the differential equation with initial condition $y(0)=1$?
(A) $y=\cos x$
(B) $y=1-x^{2}$
(C) $y=e^{x}$
(D) $y=\sqrt{1-x^{2}}$
(E) $y=\frac{1}{1+x^{2}}$
20. Consider the differential equation given by $\frac{d y}{d x}=\frac{x y}{2}$.
(a) On the axes provided, sketch a slope field for the given differential equation.

(b) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve $y=f(x)$ through the point $(1,1)$. Then use your tangent line equation to estimate the value of $f(1.2)$
(c) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=1$. Use your solution to find $f(1.2)$.
(d) Compare your estimate of $f(1.2)$ found in part (b) to the actual value of $f(1.2)$ found in part (c). Was your estimate from part (b) an underestimate or an overestimate? Use your slope field to explain why.
21. Consider the differential equation given by $\frac{d y}{d x}=\frac{x}{y}$.
(a) On the axes provided, sketch a slope field for the given differential equation.

(b) Sketch a solution curve that passes through the point $(0,1)$ on your slope field.
(c) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(0)=1$.
(d) Sketch a solution curve that passes through the point $(0,-1)$ on your slope field.
(e) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(0)=-1$.

Answers to Worksheet on Slope Fields

1. - 6. Graphs
1. C
2. D
3. A
4. B
5. B
6. C
7. D
8. A
9. E
10. D
11. E
12. E
13. E
14. (a) graph
(b) $y=1+\frac{1}{2}(x-1), 1.1$
(c) $y=e^{\frac{x^{2}-1}{4}}, 1.116$
(d) underestimate
15. (a) and (b) graphs
(c) $y=\sqrt{x^{2}+1}$
(d) graph
(e) $y=-\sqrt{x^{2}+1}$
