SLOPE FIELDS

Sketch the differential equation.

Match the slope fields with their differential equations.

Match the slope fields with their differential equations. (A) (B)

N N N - Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
1/////////////////////////////////////
ドイイトトーネノナナナナナナ
122222221444444
13 3 3 3 3 3 3 8 - 7 7 7 7 7 1
11 ヽヽヽヽヽ ホヽーノノノ ノ!
し しいいいい キャトニアノリー

TTTTTTT	
コレトリリントオトーイイノリ	
コリリリリントトーイイイオ	
$\frac{1}{1}$	
しいといいたたちにくくの	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

(C) (D) $\begin{array}{c}
11. \frac{dy}{dx} = .5x - 1
\end{array}$ (D) $\begin{array}{c}
12. \frac{dy}{dx} = .5y
\end{array}$ (D) $\begin{array}{c}
13. \frac{dy}{dx} = -\frac{x}{y}
\end{array}$

14.
$$\frac{dy}{dx} = x + y$$

15. The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?

(A)
$$y = x^2$$
 (B) $y = e^x$ (C) $y = e^{-x}$ (D) $y = \cos x$ (E) $y = \ln x$

1177-	-/// -//// -////
1177-	->// ->// ->//

16. The slope field for a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?

	(D) $y = \frac{1}{6}x^3$	(E) $y = \ln x$
111-5		
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
$\frac{\sqrt{\sqrt{\sqrt{-1}}}}{\sqrt{\sqrt{-1}}} \frac{\sqrt{\sqrt{1}}}{\sqrt{\sqrt{1}}} x$		
1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		
	$\begin{array}{c} y \\ 1 & 1 & 1 & -5 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -5 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{c} y \\ 1 & 1 & 1 & -5 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & - & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1$

17. Shown above is a slope field for which of the following differential equations?

(A)
$$\frac{dy}{dx} = xy$$

(B) $\frac{dy}{dx} = xy - y$
(C) $\frac{dy}{dx} = xy + y$
(D) $\frac{dy}{dx} = xy + x$
(E) $\frac{dy}{dx} = (x+1)^3$

18. Shown above is a slope field for which of the following differential equations?

(A)
$$\frac{dy}{dx} = xy - x$$

(B) $\frac{dy}{dx} = xy + y$
(C) $\frac{dy}{dx} = y - x^2$
(D) $\frac{dy}{dx} = (y - 1)x^2$
(E) $\frac{dy}{dx} = (y - 1)^3$

19. The slope field for a certain differential equation is shown above. Which of the following could be a solution to the differential equation with initial condition y(0)=1?

(A)
$$y = \cos x$$
 (B) $y = 1 - x^2$ (C) $y = e^x$ (D) $y = \sqrt{1 - x^2}$ (E) $y = \frac{1}{1 + x^2}$

- 20. Consider the differential equation given by $\frac{dy}{dx} = \frac{xy}{2}$.
- (a) On the axes provided, sketch a slope field for the given differential equation.

(b) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve y = f(x) through the point (1, 1). Then use your tangent line equation to estimate the value of f(1.2)

(c) Find the particular solution y = f(x) to the differential equation with the initial condition f(1)=1. Use your solution to find f(1.2).

(d) Compare your estimate of f(1.2) found in part (b) to the actual value of f(1.2) found in part (c). Was your estimate from part (b) an underestimate or an overestimate? Use your slope field to explain why.

- 21. Consider the differential equation given by $\frac{dy}{dx} = \frac{x}{y}$.
- (a) On the axes provided, sketch a slope field for the given differential equation.

	·	·	•	ŀ	•	•
	·	·	•	ŀ·	·	
	·	·	•	ŀ·	•	•
				Ι.		
_						
	•	•			:	•

- (b) Sketch a solution curve that passes through the point (0, 1) on your slope field.
- (c) Find the particular solution y = f(x) to the differential equation with the initial condition f(0)=1.

- (d) Sketch a solution curve that passes through the point (0, -1) on your slope field.
- (e) Find the particular solution y = f(x) to the differential equation with the initial condition f(0) = -1.

1. – **6.** Graphs

7. C

8. D

9. A

10. B

11. B

12. C

13. D

14. A

15. E

16. D

17. E

18. E

19. E

20. (a) graph

(b)
$$y = 1 + \frac{1}{2}(x-1)$$
, 1.1
(c) $y = e^{\frac{x^2-1}{4}}$, 1.116

(d) underestimate

21. (a) and (b) graphs

(c)
$$y = \sqrt{x^2 + 1}$$

(d) graph

(e)
$$y = -\sqrt{x^2 + 1}$$